- 相關推薦
西師版五年級下冊數學復習知識點歸納總結
總結是對取得的成績、存在的問題及得到的經驗和教訓等方面情況進行評價與描述的一種書面材料,它可以幫助我們總結以往思想,發揚成績,為此要我們寫一份總結。那么我們該怎么去寫總結呢?以下是小編整理的西師版五年級下冊數學復習知識點歸納總結,希望對大家有所幫助。
五年級下冊數學復習知識點歸納總結 1
一、圖形的變換
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特征和性質:①對稱點到對稱軸的距離相等;②對稱點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小形狀完全相同。
3、物體旋轉時應抓住三點:①旋轉中心;②旋轉方向;③旋轉角度。旋轉只改變物體的位置,不改變物體的形狀、大小。
二、因數與倍數
1、因數和倍數:如果整數a能被b整除,那么a就是b的倍數,b就是a的因數。
2、一個數的因數的求法:一個數的因數的個數是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。
3、一個數的倍數的求法:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數。
4、2、5、3的倍數的特征:個位上是0、2、4、6、8的數,都是2的倍數。個位上是0或5的數,是5的倍數。一個數各位上的數的和是3的倍數,這個數就是3的倍數。5、偶數與奇數:是2倍數的數叫做偶數(0也是偶數),不是2的倍數的數叫做奇數。6、質數和和合數:一個數,如果只有1和它本身兩個因數的數叫做質數(或素數),最小的質數是2。一個數,如果除了1和它本身還有別的因數的數叫做合數,最小的合數是4。
三、長方體和正方體
1、長方體和正方體的特征:長方體有6個面,每個面都是長方形(特殊的有一組對面是正方形),相對的面完全相同;有12條棱,相對的棱平行且相等;有8個頂點。正方形有6個面,每個面都是正方形,所有的面都完全相同;有12條棱,所有的棱都相等;有8個頂點。
2、長、寬、高:相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
3、長方體的棱長總和=(長+寬+高)×4正方體的棱長總和=棱長×12
4、表面積:長方體或正方體6個面的總面積叫做它的表面積。
5、長方體的表面積=(長×寬+長×高+寬×高)×2S=(ab+ah+bh)×2正方體的表面積=棱長×棱長×6用字母表示:S
6、表面積單位:平方厘米、平方分米、平方米相鄰單位的進率為1007、體積:物體所占空間的大小叫做物體的體積。
8、長方體的體積=長×寬×高用字母表示:V=abh長=體積÷(寬×高)寬=體積÷(長×高)高=體積÷(長×寬)
正方體的體積=棱長×棱長×棱長用字母表示:V=a×a×a
9、體積單位:立方厘米、立方分米和立方米相鄰單位的進率為1000
10、長方體和正方體的體積統一公式:長方體或正方體的體積=底面積×高V=Sh11、體積單位的互化:把高級單位化成低級單位,用高級單位數乘以進率;把低級單位聚成高級單位,用低級單位數除以進率。12、容積:容器所能容納物體的體積。
13、容積單位:升和毫升(L和ml)1L=1000ml1L=1000立方厘米1ml=1立方厘米
14、容積的計算:長方體和正方體容器容積的計算方法跟體積的計算方法相同,但要從里面量長、寬、高。
四、分數的意義和性質
1、分數的意義:把單位“1”平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
2、分數單位:把單位“1”平均分成若干份,表示這樣的一份的數叫做分數單位。
3、分數與除法的關系:除法中的被除數相當于分數的分子,除數相等于分母,用字母表示:a÷b=(b≠0)。
4、真分數和假分數:分子比分母小的分數叫做真分數,真分數小于1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大于1或等于1。由整數部分和分數部分組成的分數叫做帶分數。
5、假分數與帶分數的互化:把假分數化成帶分數,用分子除以分母,所得商作整數部分,余數作分子,分母不變。把帶分數化成假分數,用整數部分乘以分母加上分子作分子,分母不變。
6、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質。
7、最大公因數:幾個數共有的因數叫做它們的公因數,其中最大的一個叫做最大公因數。
8、互質數:公因數只有1的兩個數叫做互質數。兩個數互質的特殊判斷方法:①1和任何大于1的自然數互質。②2和任何奇數都是互質數。③相鄰的兩個自然數是互質數。④相鄰的兩個奇數互質。⑤不相同的兩個質數互質。⑥當一個數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。
9、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。
10、約分:把一個分數化成和它相等,但分子和分母都比較小的`分數,叫做約分。
11、最小公倍數:幾個數共有的倍數叫做它們的公倍數,其中最小的一個叫做最小公倍數。
12、通分:把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
13、特殊情況下的最大公因數和最小公倍數:
①成倍數關系的兩個數,最大公因數就是較小的數,最小公倍數就是較大的數。②互質的兩個數,最大公因數就是1,最小公倍數就是它們的乘積。
14、分數的大小比較:同分母的分數,分子大的分數就大,分子小的分數就小;同分子的分數,分母大的分數反而小,分母小的分數反而大。
15、分數和小數的互化:小數化分數,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……,去掉小數點作分子,能約分的必須約成最簡分數;分數化小數,用分子除以分母,除不盡的按要求保留幾位小數。
五、分數的加法和減法
1、同分母分數的加減法:同分母分數相加、減,分母不變,只把分子相加減。
2、異分母分數的加減法:異分母分數相加、減,先通分,再按照同分母分數加減法的方法進行計算。
3、分數加減混合運算的運算順序與整數加減混合運算的順序相同。在一個算式中,如果含有括號,應先算括號里面的,再算括號外面的;如果只含有同一級運算,應從左到右依次計算。
六、打電話
1、逐個法:所需時間最多;
2、分組法:相對節約時間;
3、同時進行法:最節約時間。
1.因為2×6=12,我們就說2和6是12的因數,12是2的倍數,也是6的倍數。不能單獨說誰是倍數或因數
2.求一個數的因數,用乘法一對一對找,寫的時候一般都是從小到大排列的3.求一個數的倍數,用一個數去乘1、乘2、乘3、乘4……
4.一個數的最小因數是1,最大的因數是它本身,一個數的因數的個數是有限的。
5.一個數的最小的倍數是它本身,沒有最大的倍數,一個數的倍數的個數是無限的。
6.個位上是0,2,4,6,8的數,都是2的倍數,也是偶數。
7.自然數中,是2的倍數的數叫做偶數(0也是偶數)。不是2的倍數的數叫奇數。
8.個位上是0或者5的數,都是5的倍數。
9.個位是0的數,既是2的倍數,又是5的倍數。
10.一個數各位上的和是3的倍數,這個數就是3的倍數。11.只有1和它本身兩個因數的數叫做質數(或素數),除了1和它本身還有別的因數的數叫做合數。1既不是質數,也不是合數。
12.整數按因數的個數來分類:1,質數,合數。整數按是否是2的倍數來分類:奇數,偶數
13.將合數分解成幾個質數相乘的形式就叫做分解質因數。分解質因數用短除法,把36分解質因數是?
14.最小的質數是2,最小合數是4,最小奇數是1,最小偶數是0,同時是2,5,3倍數的最小數是30,最小三位數是120
15.奇數加奇數等于偶數。奇數加偶數等于奇數。偶數加偶數等于偶數。
16.a是c的倍數,b是c的倍數,那么a+b的和是c的倍數,c是a+b和的因數,a-b的差是c的倍數,c是a-b差的因數。
17.如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
18.軸對稱圖形特征:對應點到對稱軸的距離相等,對應點連線垂直于對稱軸19.長方體有6個面。每個面都是長方形(可能有兩個相對的面是正方形),相對的面大小相等(完全相同)。
20.長方體有12條棱,分為三組,相對的4條棱長度相等。21.長方體有8個頂點。
22.相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高
23.正方體有6個面,6個面都是正方形,6個面完全相等,正方體有12條棱,12條棱長度都相等,正方體有8個頂點24.長方體棱長之和:(長+寬+高)×4長×4+寬×4+高×425.正方體棱長之和:棱長×12
26.長方體(正方體)6個面的總面積,叫做它的表面積。
27.長方體表面積=(長×寬+寬×高+長×高)×2或長方體表面積=長×寬×2+寬×高×2+長×高×228.正方體表面積=棱長×棱長×629.計量體積要用體積單位,常用的體積單位有立方厘米,立方分米,立方米,可以分別寫成cm3dm3m330.棱長是1cm的正方體,體積是1cm3,棱長是1cm的正方體,體積是1dm3,棱長是1cm的正方體,體積是1m3
31.長方體所含體積單位的數量就是長方體的體積。長方體的體積=長×寬×高,v=abh;正方體體積=棱長×棱長×棱長,v=a3=a×a×aa3表示3個a相乘
32.相鄰兩個體積單位間的進率是1000,相鄰兩個面積單位間的進率是1000,相鄰兩個長度單位間的進率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,計量容積一般用體積單位,計量液體的體積,用升和毫升
33.一個物體、一些物體等都可以看作一個整體,一個整體可以用自然數1來表示,通常把它叫做單位“1”。
34.把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫做分數。例如:表示把單位“1”平均分成7份,表示這樣的3份。其中表示一份的數叫做分數單位。
35.米表示
(1)把5米看作單位“1”,把單位“1”平均分成8份,表示這樣的1份,就是米,算式:5÷8=(米)
(2)把1米看作單位“1”,把單位“1”平均分成8份,表示這樣的5份,就是米,算式:1÷8=(米),5個米就是米
36.當整數除法得不到整數的商時,可以用分數表示除法的商。在用分數表示整數除法的商時,分數的分子相當于除法的被除數,分數的分母相當于除法的除數,除號相當于分數中的分數線。(除數不能為0)區別:分數是一種數,除法是一種運算
37.分子比分母小的分數叫真分數,真分數小于1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大于或等于1。
38.帶分數包括整數部分和分數部分。假分數化成帶分數,用分子除以分母所得的商作為帶分數的整數部分,余數作為分子,分母不變。帶分數化成假分數時,用整數部分和分母相乘再加分子所得結果作分子,分母不變。
39.A是B的幾分之幾?用A÷B
40.分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。41.幾個數公有的因數,叫做這幾個數的公因數。其中最大的一個叫做這幾個數的最大公因數。通常把每個數分解質因數,把它們所有的公有質因數相乘,來求最大公因數。
42.如果兩個數的公因數只有1,這兩個數是互質數。兩個連續自然數;兩個質數;1和其他自然數一定是互質數。
43.分子和分母只有公因數1的分數叫做最簡分數。把一個分數化成和它相等,但分子分母比較小的分數,叫做約分。
44.幾個數公有的倍數,叫做這幾個數的公倍數。其中最小的一個叫做這幾個數的最小公倍數。通常把每個數分解質因數,把它們所有的公有質因數和獨有質因數相乘,來求最小公倍數。45.把異分母分數分別化成和原來分數相等的同分母分數(公分母),叫做通分。
46.求三個數的最大公因數和最小公倍數時,可以先求其中兩個數的最大公因數和最小公倍數,用求出的最大公因數和最小公倍數再與第三個數求最大公因數和最小公倍數。
47.如果兩個數是倍數關系,那么兩個數的最大公因數是較小數,最小公倍數是較大數。48.如果兩個數公因數只有1,那么這兩個數的最大公因數是1,最小公倍數是它們的乘積。49.兩個數公因數只有1的幾種特殊情況:1和其他自然數,相鄰兩個自然數,兩個質數。
50.分數化成小數:用分子除以分母化成小數。小數化成分數:把小數寫成分母是10,100,1000……的分數,然后再化成最簡分數。
(1)15=()+()
(2)16=()+()=()+()
(3)24=()+()=()+()=()+()
五年級下冊數學復習知識點歸納總結 2
1、小數乘法的計算法則:
先按照整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0占位。
2、計算中的發現:
①一個數(0除外)乘小于1的數,積比原來的'數小。如:3.7×0.2=0.74
②一個數(0除外)乘大于1的數,積比原來的數大。如:3.7×2=7.4
③一個數(0除外)乘于1,積和原來的數相等。如:3.5×1=3.5
3、小數乘法的驗算方法:
①把因數的位置交換,再乘一遍。
②積÷一個因數=另一個因數。
4、小數四則運算順序跟整數是一樣的。(加、減法是第一級,乘、除法是第二級)
①一個算式里,如果含有同一級運算,要從左往右依次計算。
②一個算式里,如果含有兩級運算,要先算第二級運算,后算第一級運算。(即是先×÷后+?)
③一個算式里,如果有括號,先算括號里面的,后算括號外面的。
5、積的近似值:先求出積,根據要求用“四舍五入”法保留一定的小數位數。
6、運算定律和性質:
加法:加法交換律:a+b=b+a加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性質:a÷b÷c=a÷(b×c)
五年級下冊數學復習知識點歸納總結 3
1、分數:把單位“1”平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
2、分母:表示平均分的份數。分子:表示取出的份數。
3、分數單位:把單位“1”平均分成若干份,表示這樣的一份或幾份的數,叫做分數。表示其中的一份的數,叫做這個分數的分數單位。
4、真分數:分子小于分母的分數叫做真分數。真分數小于1。
5、假分數:分子大于或等于分母的分數,叫做假分數。假分數都大于或等于1。
6、帶分數:由整數和真分數組成的分數叫做帶分數。
7、假分數化成帶分數:用分子除以分母,商是帶分數的整數部分,余數是帶分數分數部分的分子,分母不變。
8、整數化成假分數:用指定的分母做分母,用整數與分母的積做分子。
9、帶分數化成假分數:用帶分數的整數部分乘分母加分子做分子,分母不變。
10、質因數:每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的'因數,叫做這個合數的質因數。
11、把一個合數用質因數相乘的形式表示出來,叫做分解質因數。如12=2×2×3
12、幾個數公有的因數叫做這幾個數的公因數。其中的一個,叫做它們的公因數。
13、互質:兩個數的公因數只有1,這兩個數叫做互質。互質的規律:(1)相鄰的自然數互質;(2)相鄰的奇數都是互質數;(3)1和任何數互質;(4)兩個不同的質數互質(5)2和任何奇數互質。質數與互質的區別:質數是就一個數而言,而互質是指兩個或兩個以上的數之間的關系;這些數本身不一定是質數,但它們之間的公因數是1,如8和9。
14、幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。
15、求公因數,最小公倍數的方法關系公因數最小公倍數倍數關系
16、分子分母互質的分數叫最簡分數,或者說分子分母的公因數只有的1的分數是最簡分數。
17、約分:把一個分數的分子和分母同時除以公因數,分數值不變,這個過程叫做約分。計算結果通常用最簡分數表示。
18、通分:把異分母分數分別化成同分母分數,叫通分。通常用最小公倍數做分數的分母較簡便。
19、如何比較分數的大小:分母相同時,分子大的分數大;分子相同時,分母小的分數大;分子分母都不同時,通分再比。
20、分數基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數大小不變。
21、分數的意義兩種解釋:①把單位“1”平均分成4份,表示這樣的3份。 ②把3平均分成4份,表示這樣的1份。
數學整數加法知識點
(1)把兩個數合并成一個數的運算叫做加法。
(2)在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。
(3)加數+加數=和,一個加數=和—另一個加數
數學世界最大的數和最小的數
最大的數,從數學意義上講是不存在的。但是有一個數,宇宙間任何一個量都未能超過它,這個數就是10的100次方,也叫“古戈爾”(gogul的譯音)。
目前世界上每秒運算10億(10的9次方)次的最快速的電子計算機,假定它從宇宙形成時(距今約200億年)就開始運算,到今天,其運算總次數也不夠10的100次方次。
沒有最小的數字,但有最小的自然數,就是“0”。
五年級下冊數學復習知識點歸納總結 4
1、一個物體、一個計量單位或由許多物體組成的一個整體,都可以用自然數1來表示,通常我們把它叫做單位“1”。把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數,叫做分數單位。一個分數的分母是幾,它的分數單位就是幾分之一。
2、分母越大,分數單位越小,最大的分數單位是2(1)。
3、舉例說明一個分數的意義:7(3)表示把單位“1”平均分成7份,表示這樣的3份.還表示把3平均分成7份,表示這樣的1份。7(3)噸表示把1噸平均分成7份,表示這樣的3份.還表示把3噸平均分成7份,表示這樣的1份。
4、4米的5(1)和1米的5(4)同樣長。
5、分子比分母小的分數叫做真分數;分子比分母大或者分子和分母相等的分數叫做假分數。6、真分數小于1。假分數大于或等于1。真分數總是小于假分數。
7、男生人數是女生人數的4(3),則女生人數是男生人數的3(4)。
8、分數與除法的關系:被除數相當于分數的分子,除數相當于分數的分母。
被除數÷除數=除數(被除數)如果用a表示被除數,b表示除數,可以寫成a÷b=b(a)(b≠0)
9、能化成整數的假分數,它們的分子都是分母的倍數。反過來,分子是分母倍數的假分數,都能化成整數。(用分子除以分母)
10、分子不是分母倍數的假分數,可以寫成整數和真分數合成的`數,通常叫做帶分數。帶分數是假分數的另一種形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的數,寫作
13(1),讀作一又三分之一。帶分數都大于真分數,同時也都大于1。
11、把分數化成小數的方法:用分數的分子除以分母。
12、把小數化成分數的方法:如果是一位小數就寫成十分之幾,是兩位小數就寫成百分之幾,是三位小數就寫成千分之幾,……
13、把假分數轉化成整數或帶分數的方法:分子除以分母,如果分子是分母的倍數,可以化成整數;如果分子不是分母的倍數,可以化成帶分數,除得的商作為帶分數的整數部分,余數作為分數部分的分子,分母不變。
14、把帶分數化成假分數的方法:把整數乘分母加分子作為假分數的分子,分母不變。
15、把不是0的整數化成假分數的方法:用整數與分母相乘的積作分子。
16、大于7(3)而小于7(5)的分數有無數個;分數單位是7(1)只有7(4)一個。
17、分數大小比較的應用題:工作效率大的快,工作時間小的快。
18、一些特殊分數的值:
2(1)=0.54(1)=0.254(3)=0.755(1)=0.25(2)=0.45(3)=0.6
5(4)=0.88(1)=0.1258(3)=0.3758(5)=0.6258(7)=0.87510(1)=0.116(1)=0.0625
16(3)=0.187516(5)=0.312520(1)=0.0525(1)=0.0450(1)=0.02100(1)=0.01
19、求一個數是(占)另一個數的幾分之幾,用除法列算式計算。
五年級下冊數學復習知識點歸納總結 5
1、眾數:一組數據中出現次數最多的一個數或幾個數,就是這組數據的眾數。
眾數能夠反映一組數據的集中情況。
在一組數據中,眾數可能不止一個,也可能沒有眾數。
2、中位數:
(1)按大小排列;
(2)如果數據的個數是單數,那么最中間的那個數就是中位數;
(3)如果數據的個數是雙數,那么最中間的那兩個數的平均數就是中位數。
3、平均數的求法:
總數÷總份數=平均數
4、一組數據的一般水平:
(1)當一組數據中沒有偏大偏小的數,也沒有個別數據多次出現,用平均數表示一般水平。
(2)當一組數據中有偏大或偏小的數時,用中位數來表示一般水平。
(3)當一組數據中有個別數據多次出現,就用眾數來表示一般水平。
5、平均數、中位數和眾數的聯系與區別:
①平均數:
一組數據的總和除以這組數據個數所得到的商叫這組數據的平均數。
容易受極端數據的影響,表示一組數據的平均情況。
②中位數:
將一組數據按大小順序排列,處在最中間位置的一個數叫做這組數據的中位數。
它不受極端數據的影響,表示一組數據的一般情況。
③眾數:
在一組數據中出現次數最多的.數叫做這組數據的眾數。
它不受極端數據的影響,表示一組數據的集中情況。
5、統計圖:我們學過——條形統計圖、復式折線統計圖。
條形統計圖優點:條形統計圖能形象地反映出數量的多少。
折線統計圖優點:折線統計圖不僅能表示出數量的多少,還能反映出數量的變化情況。
注:①畫圖時注意:
一“點”(描點)、二“連”(連線)、三“標”(標數據)。
②要用不同的線段分別連接兩組數據中的數。
6、打電話:
規律——人人不閑著,每人都在傳。(技巧:已知人數依次× 2)
(1)逐個法:所需時間最多。
(2)分組法:相對節約時間。
(3)同時進行法:最節約時間。
數學長度單位
1、常用的長度單位:米、厘米。
2、測量較短物體通常用厘米作單位,測量較長物體通常用米作單位。
3、測量物體長度的方法:將物體的左端對準直尺的“0”刻度,看物體的右端對著直尺上的刻度是幾,這個物體的長度就是幾厘米。
4、米和厘米的關系:1米=100厘米100厘米=1米
5、線段
⑴線段的特點:①線段是直的;②線段有兩個端點;③線段有長有短,是可以量出長度的。
⑵畫線段的方法:先用筆對準尺子的’0”刻度,在它的上面點一個點,再對準要畫到的長度的厘米刻度,在它的上面也點一個點,然后把這兩個點連起來,寫出線段的長度。
⑶測量物體的長度時,當不是從“0”刻度量起時,要用終點的刻度數減去起點的刻度數。
小學數學循環節是什么
1循環節簡介
無限小數的小數點后,從某一位起向右進行到某一位止的一節數字循環出現,首尾銜接,稱這種小數為循環小數,這一節數字稱為循環節。
13÷99=0.1313…,這個商就是一個循環小數,它的循環節是13,方法二,可以用看余數的方法,來確定循環小數的循環節,例如,11÷9=1.……2,我們通過豎式計算可看出,數2重復出現,商就重復出現,那么循環節就是從,第一次出現余數2,所得的商2,所以我們可以用,看余數的方法,來確定循環節。
2循環節的判斷
判斷一個小數是否循環小數,其關鍵是首先判斷這個小數是否無限小數,其次看這個小數的小數部分是否有重復出現的數字,但是如何正確判斷小數部分重復出現的數字,可根據以下幾點進行判斷
方法一:按照循環小數的意義來確定。即根據“一個無限小數,如果它的小數部分從某一位起,都是由一個或者幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。”這一意義來確定循環小數的循環節。
方法二:可以用看余數的方法來確定循環小數的循環節。例如:11÷9=1.……2。我們通過豎式計算可看出:余數“2”重復出現,商就重復出現,那么循環節就是從第一次出現余數“2”所得的商“2 ”。
【五年級下冊數學復習知識點歸納總結】相關文章:
高三數學復習知識點總結12-26
初一生物下冊知識點歸納總結02-27
高一數學必修二知識點總結歸納07-05
初中幾何知識點總結歸納10-27
初二數學下冊知識點總結03-05
高二化學知識點總結歸納09-11
初中物理電學知識點歸納總結12-15
地理高中知識點歸納總結08-31
初二物理知識點總結歸納01-31