重囗另类BBWSeⅹHD,av狼论坛,精品一卡2卡三卡4卡乱码理论,体育生gv老师浪小辉3p警察

八年級下冊數學公開課教案

時間:2023-01-04 13:36:05 數學教案 我要投稿
  • 相關推薦

八年級下冊數學公開課教案(通用10篇)

  作為一名人民教師,可能需要進行教案編寫工作,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。怎樣寫教案才更能起到其作用呢?以下是小編收集整理的八年級下冊數學公開課教案(通用10篇),僅供參考,大家一起來看看吧。

八年級下冊數學公開課教案(通用10篇)

  八年級下冊數學公開課教案 篇1

  一、學習目標

  1.多項式除以單項式的運算法則及其應用。

  2.多項式除以單項式的運算算理。

  二、重點難點

  重點:多項式除以單項式的運算法則及其應用。

  難點:探索多項式與單項式相除的運算法則的過程。

  三、合作學習

  (一)回顧單項式除以單項式法則

  (二)學生動手,探究新課

  1.計算下列各式:

  (1)(am+bm)÷m;

  (2)(a2+ab)÷a;

  (3)(4x2y+2xy2)÷2xy。

  2.提問:

  ①說說你是怎樣計算的;

  ②還有什么發現嗎?

  (三)總結法則

  1.多項式除以單項式:

  2.本質:

  四、精講精練

  (1)(12a3—6a2+3a)÷3a;

  (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

  (3)[(x+y)2—y(2x+y)—8x]÷2x;

  (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

  隨堂練習:教科書練習。

  五、小結

  1、單項式的除法法則

  2、應用單項式除法法則應注意:

  A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號;

  B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的.情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

  C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

  D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行;

  E、多項式除以單項式法則。

  八年級下冊數學公開課教案 篇2

  一、學習目標

  1.使學生了解運用公式法分解因式的意義;

  2.使學生掌握用平方差公式分解因式

  二、重點難點

  重點:掌握運用平方差公式分解因式。

  難點:將單項式化為平方形式,再用平方差公式分解因式。

  學習方法:歸納、概括、總結。

  三、合作學習

  創設問題情境,引入新課

  在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

  如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的'方法——公式法。

  1.請看乘法公式

  左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

  利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式講解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精講精練

  例1、把下列各式分解因式:

  (1)25—16x2;

  (2)9a2—b2。

  例2、把下列各式分解因式:

  (1)9(m+n)2—(m—n)2;

  (2)2x3—8x。

  補充例題:判斷下列分解因式是否正確。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

  (2)a4—1=(a2)2—1=(a2+1)(a2—1)。

  五、課堂練習

  教科書練習。

  六、作業

  1、教科書習題。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

  八年級下冊數學公開課教案 篇3

  一、學習目標:

  1.經歷探索平方差公式的過程。

  2.會推導平方差公式,并能運用公式進行簡單的運算。

  二、重點難點

  重點:平方差公式的推導和應用;

  難點:理解平方差公式的結構特征,靈活應用平方差公式。

  三、合作學習

  你能用簡便方法計算下列各題嗎?

  (1)2001×1999

  (2)998×1002

  導入新課:計算下列多項式的'積.

  (1)(x+1)(x—1);

  (2)(m+2)(m—2)

  (3)(2x+1)(2x—1);

  (4)(x+5y)(x—5y)。

  結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。

  即:(a+b)(a—b)=a2—b2

  四、精講精練

  例1:運用平方差公式計算:

  (1)(3x+2)(3x—2);

  (2)(b+2a)(2a—b);

  (3)(—x+2y)(—x—2y)。

  例2:計算:

  (1)102×98;

  (2)(y+2)(y—2)—(y—1)(y+5)。

  隨堂練習

  計算:

  (1)(a+b)(—b+a);

  (2)(—a—b)(a—b);

  (3)(3a+2b)(3a—2b);

  (4)(a5—b2)(a5+b2);

  (5)(a+2b+2c)(a+2b—2c);

  (6)(a—b)(a+b)(a2+b2)。

  五、小結

  (a+b)(a—b)=a2—b2

  八年級下冊數學公開課教案 篇4

  一、教材分析:

  《正方形》這節課是九年義務教育人教版數學教材八年級下冊第十九章第二節的內容。縱觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續,又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環節。

  本節課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯系。根據大綱要求,本節課制定了知識、能力、情感三方面的目標。

  (一)知識目標:

  1、要求學生掌握正方形的概念及性質;

  2、能正確運用正方形的性質進行簡單的計算、推理、論證;

  (二)能力目標:

  1、通過本節課培養學生觀察、動手、探究、分析、歸納、總結等能力;

  2、發展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;

  (三)情感目標:

  1、讓學生樹立科學、嚴謹、理論聯系實際的良好學風;

  2、培養學生互相幫助、團結協作、相互討論的團隊精神;

  3、通過正方形圖形的完美性,培養學生品格的完美性。

  二、學生分析:

  該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節課的教學過程中,特意設計了讓學生自己組織語言培養說理能力,讓學生們能逐步提高。

  三、教法分析:

  針對本節課的特點,采用"實踐--觀察--總結歸納--運用"為主線的教學方法。

  通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。

  四、學法分析:

  本節課重點是從培養學生探索精神和分析歸納總結能力為出發點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。

  五、教學程序:

  第一環節:相關知識回顧

  以提問的形式復習的平行四邊形、矩形、菱形的定義及性質之后,引導學生發現矩形、菱形的實質是由平行四邊形角度、邊長的變化得到的。并啟發學生考慮,若這兩種變化同時發生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結論。

  第二環節:新課講解通過學生們的發現引出課題“正方形”

  1、正方形的定義:引導學生說出自己變化出正方形的.過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發言,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發學生們發現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發學生發現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。

  2、正方形的性質

  定理1:正方形的四個角都是直角,四條邊都相等;

  定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

  以上是對正方形定義和性質的學習,之后是進行例題講解。

  3、例題講解:求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時強調證明格式的書寫。從而培養他們語言表達能力,讓學生的個性得到充分的展示

  4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。

  第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要服務于生活。

  5、課堂小結:此環節我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯系,通過對所學幾種四邊形內在聯系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。

  6、作業設計:作業是教材159頁,第12、14兩小道證明題,通過此作業讓同學們進一步鞏固有關正方形的知識。

  八年級下冊數學公開課教案 篇5

  教學目標:

  1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

  2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

  3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

  4、能利和計算器求一組數據的算術平均數。

  教學重點

  體會平均數、中位數、眾數在具體情境中的意義和應用。

  教學難點

  對于平均數、中位數、眾數在不同情境中的應用。

  教學方法

  歸納教學法。

  教學過程:

  一、知識回顧與思考

  1、平均數、中位數、眾數的概念及舉例。

  一般地對于n個數X1……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

  如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的'比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

  中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

  眾數就是一組數據中出現次數最多的那個數據。

  如3,2,3,5,3,4中3是眾數。

  2、平均數、中位數和眾數的特征:

  (1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

  (2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

  (3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

  (4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

  3、算術平均數和加權平均數有什么區別和聯系:

  算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

  4、利用計算器求一組數據的平均數。

  利用科學計算器求平均數的方法計算平均數。

  二、例題講解:

  某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

  三、課堂練習:復習題A組

  四、小結:

  1、掌握平均數、中位數與眾數的概念及計算。

  2、理解算術平均數與加權平均數的聯系與區別。

  五、作業:復習題B組、C組(選做)

  八年級下冊數學公開課教案 篇6

  一、教材分析

  1、特點與地位:重點中的重點。

  本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網絡等方面具有一定的實用意義。

  2、重點與難點:結合學生現有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

  (1)重點:如何將現實問題抽象成求解最短路徑問題,以及該問題的解決方案。

  (2)難點:求解最短路徑算法的程序實現。

  3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結合,逐步推動教學過程。

  二、教學目標分析

  1、知識目標:掌握最短路徑概念、能夠求解最短路徑。

  2、能力目標:

  (1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養學生的數據抽象能力。

  (2)通過旅游景點線路選擇問題的解決,培養學生的獨立思考、分析問題、解決問題的能力。

  3、素質目標:培養學生講究工作方法、與他人合作,提高效率。

  三、教法分析

  課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發的方式展開教學。由于本節課的內容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據學生的反應控制好教學進度是本節課成功的關鍵。

  四、學法指導

  1、課前上次課結課時給學生布置任務,使其有針對性的預習。

  2、課中指導學生討論任務解決方法,引導學生分析本節課知識點。

  3、課后給學生布置同類型任務,加強練習。

  五、教學過程分析

  (一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

  教學方法及注意事項:

  (1)采用提問方式,注意及時小結,提問的目的是幫助學生回憶概念。

  (2)提示學生“溫故而知新”,養成良好的學習習慣。

  (二)導入新課(3~5分鐘)以城市公路網為例,基于求兩個點間最短距離的實際需要,引出本課教學內容“求最短路徑問題”。教學方法及注意事項:

  (1)先講實例,再指出概念,既可以吸引學生注意力,激發學習興趣,又可以實現教學內容的自然過渡。

  (2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的`例子只需要概述,能夠說明問題即可。

  (三)講授新課(25~30分鐘)

  1、求某一結點到其他各結點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。

  (1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。(3~5分鐘)教學方法及注意事項:

  ①主要采用講授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

  ②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。

  ③及時總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。

  ④利用多媒體課件,向學生展示一張帶權有向圖,并略作解釋,為后續教學做準備。

  教學方法及注意事項:

  ①啟發式教學,如何實現按路徑長度遞增產生最短路徑?

  ②結合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。

  (四)課堂小結(3~5分鐘)

  1、明確本節課重點

  2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?

  (五)布置作業

  書面作業:復習本次課內容,準備一道備用習題,靈活把握時間安排。

  六、教學特色

  以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現所講內容的實用性,提高學生的學習興趣。

  八年級下冊數學公開課教案 篇7

  教學目標:

  1、經歷數據離散程度的探索過程

  2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

  教學重點:

  會計算某些數據的極差、標準差和方差。

  教學難點:

  理解數據離散程度與三個差之間的關系。

  教學準備:

  計算器,投影片等

  教學過程:

  一、創設情境

  1、投影課本P138引例。

  (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

  2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

  二、活動與探究

  如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿(投影課本159頁圖)

  問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

  2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的'差距。

  3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

  (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

  三、講解概念:

  方差:各個數據與平均數之差的平方的平均數,記作s2

  設有一組數據:x1,x2,x3,,xn,其平均數為

  則s2=

  而s=稱為該數據的標準差(既方差的算術平方根)

  從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

  四、做一做

  你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

  (通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

  五、鞏固練習:課本第172頁隨堂練習

  六、課堂小結:

  1、怎樣刻畫一組數據的離散程度?

  2、怎樣求方差和標準差?

  七、布置作業:習題5.5第1、2題。

  八年級下冊數學公開課教案 篇8

  教學目標:

  1、知道負整數指數冪=(a≠0,n是正整數)、

  2、掌握整數指數冪的運算性質、

  3、會用科學計數法表示小于1的數、

  教學重點:

  掌握整數指數冪的運算性質。

  難點:

  會用科學計數法表示小于1的數。

  情感態度與價值觀:

  通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐。能利用事物之間的類比性解決問題、

  教學過程:

  一、課堂引入

  1、回憶正整數指數冪的運算性質:

  (1)同底數的冪的乘法:am·an=am+n(m,n是正整數);

  (2)冪的乘方:(am)n=amn(m,n是正整數);

  (3)積的`乘方:(ab)n=anbn(n是正整數);

  (4)同底數的冪的除法:am÷an=am·n(a≠0,m,n是正整數,m>n);

  (5)商的乘方:()n=(n是正整數);

  2、回憶0指數冪的規定,即當a≠0時,a0=1

  3、你還記得1納米=xx米嗎?

  4、計算當a≠0時,a3÷a5=,另一方面,如果把正整數指數冪的運算性質am÷an=am·n(a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5=a3·5=a·2,于是得到a·2=(a≠0)。

  二、總結:

  一般地,數學中規定:當n是正整數時,(a≠0)(注意:適用于m、n可以是全體整數)教師啟發學生由特殊情形入手,來看這條性質是否成立、事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am·an=am+n(m,n是整數)這條性質也是成立的、

  三、科學記數法:

  我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012=1.2×10?即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數。

  八年級下冊數學公開課教案 篇9

  教學目標:

  1、在現實情境中,通過具體的操作活動,了解直角三角形的判定定理,

  2、運用判定定理解決有關問題。

  重點:

  直角三角形的判定定理。

  難點:

  探索直角三角形的判定定理的應用。

  教學過程:

  一、回顧知識引入新課

  1、直角三角形的定義:有一個角是直角的三角形叫直角三角形。

  2、三角形內角和性質:三角形內角和等于180°。

  3、三角形中線的定義:三角形頂點與對邊中點連線段。

  二、想一想,探求判定定理。

  1、在△ABC中,如果∠A+∠B=90°那么△ABC是直角三形嗎?

  證明:∵∠A+∠B=90°(已知)

  ∠A+∠B+∠C=180°(△的內角和為180°)

  ∴∠C=180°-(∠A+∠B)=180°-90°=90°

  ∴△ABC是直角三角形(直角三角形定義)

  直角△的`判定定理1:兩銳角互余的△是直角三角形。

  在三角形中如果兩銳角互余那么三角形是直角△

  2、如果,三角形一邊上的中線等這邊的一半,那么這個△是直角△嗎?

  已知,在△ABC中,CD是AB邊上的中線且CD=1/2AB,求證△ABC是RT△

  證明∵CD是△ABC的AB邊上中線(已知)

  AD=BD=1/2AB(中點的性質)

  ∵CD=1/2AB(已知)

  ∴CD=BDCD=AD

  ∴∠2=∠B∠1=∠A(等邊對等角)

  ∵∠A+∠B+∠ABC=180(三角形內角和性質)

  ∴∠A+∠B+(∠1+∠2)=180

  ∴∠A+∠B+∠A+∠B=180

  ∴2(∠A+∠B)=180

  ∠A+∠B=90

  所以三角形ABC是直角三角形(直角三角形判定定理1)

  三、鞏固與練習

  1、在△ABC,若∠A=35,∠B=55則△ABC是△?

  2、在△ABC中,CD是AB邊上的中線,CD=1/2AB,那么△ABC的形狀是()

  A:銳角△B:鈍角△C:直角△D:以上都不對

  3、在等邊△ABC中,延長BC至D,使CD=CB,使AC=1/2BD。

  求證:△ABD是直角△,

  證明:∵CD=CB(已知)

  ∴點C為BC的中點(中點的定義)

  ∴AC為△ABC的邊BD上的中線(中線的定義)

  ∵AC=1/2BD(已知)

  ∴△ABD是直角△(直角△的判定定理2)

  四、小結:這節課學習了直角三角形兩個判定定理

  1、兩銳角互余的三角形是直角三角形。

  2、在三角形中如果一條邊上的中線,等于這條邊的一半的三角形是直角三角形。

  五、作業布置:

  課本87頁練習題。

  八年級下冊數學公開課教案 篇10

  一、教學目標

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質和,并能靈活應用;

  4、通過二次根式的計算培養學生的邏輯思維能力;

  5、通過二次根式性質和的介紹滲透對稱性、規律性的數學美。

  二、教學重點和難點

  重點:

  (1)二次根的意義;

  (2)二次根式中字母的取值范圍。

  難點:

  確定二次根式中字母的取值范圍。

  三、教學方法

  啟發式、講練結合。

  四、教學過程

  (一)復習提問

  1、什么叫平方根、算術平方根?

  2、說出下列各式的意義,并計算

  (二)引入新課

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學們討論論應注意的問題,引導學生總結:

  (1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

  (2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

  例1當a為實數時,下列各式中哪些是二次根式?

  例2是怎樣的'實數時,式子在實數范圍有意義?

  解:略。

  說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。

  例3當字母取何值時,下列各式為二次根式:

  分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

  解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。

  (2)—3x≥0,x≤0,即x≤0時,是二次根式。

  (3),且x≠0,∴x>0,當x>0時,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何實數時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

  (4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

【八年級下冊數學公開課教案】相關文章:

數學五年級下冊公開課教案01-25

八年級數學下冊教案01-10

八年級數學公開課教案02-19

數學公開課教案01-09

八年級下冊數學的教案優秀02-27

小學數學下冊教案11-15

小學數學下冊教案12-27

六年級下冊數學公開課教案01-08

三年級下冊數學公開課教案02-14

主站蜘蛛池模板: 兴仁县| 潮州市| 南澳县| 武陟县| 边坝县| 溧水县| 赤城县| 南安市| 松滋市| 上林县| 惠来县| 清丰县| 肇源县| 瑞安市| 建湖县| 宿迁市| 鄱阳县| 胶州市| 临湘市| 峡江县| 四川省| 南木林县| 广西| 林芝县| 堆龙德庆县| 抚松县| 烟台市| 苗栗县| 腾冲县| 荆州市| 黎城县| 尖扎县| 渝中区| 象州县| 进贤县| 芮城县| 洛隆县| 黑龙江省| 乌海市| 墨玉县| 武胜县|