- 高二上冊數學教學計劃 推薦度:
- 相關推薦
【推薦】高二上冊數學教學計劃四篇
日子如同白駒過隙,不經意間,我們的教學工作又將抒寫新的篇章,讓我們一起來學習寫教學計劃吧。但是教學計劃要寫什么內容才能讓人眼前一亮呢?以下是小編為大家整理的高二上冊數學教學計劃4篇,歡迎閱讀,希望大家能夠喜歡。
高二上冊數學教學計劃 篇1
一、教材分析
1、教材地位、作用
本節課的內容選自《普通高中課程標準實驗教科書數學必修3(A)版》第三章中的第3。2。1節古典概型。它安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、學情分析
學生基礎一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節上不完備,反映在解題中就是思維不慎密,過程不完整。
二、教學目標
1、知識與技能目標
⑴、理解等可能事件的概念及概率計算公式;⑵、能夠準確計算等可能事件的概率。
2、過程與方法
根據本節課的知識特點和學生的認知水平,教學中采用探究式和啟發式教學法,通過生活中常見的實際問題引入課題,層層設問,經過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。
3、情感態度與價值觀
概率問題與實際生活聯系緊密,學生通過概率知識的學習,可以更好的理解隨機現象的本質,掌握隨機現象的規律,科學地分析、解釋生活中的一些現象,初步形成實事求是的科學態度和鍥而不舍的求學精神。
三、重點、難點
重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。
難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。
四、教學過程
1、創設情境提出問題
師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?
【設計意圖】通過這個同學們經常會遇到的問題,引導學生合作探索新知識,符合“學生為主體,老師為主導”的現代教育觀點,也符合學生的認知規律。隨著新問題的提出,激發了學生的求知欲望,使課堂的有效思維增加。
2、抽象思維形成概念
師:考察試驗一“拋擲一枚質地均勻的骰子”,有幾種不同的結果,結果分別有哪些?
生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。
師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。
師:考察試驗二“拋擲一枚質地均勻的硬幣”有哪些基本事件?
生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。
師:那基本事件有什么特點呢?
問題:(1)在“拋擲一枚質地均勻的骰子”試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎?
(2)事件“出現偶數點”包含了哪幾個基本事件?
由如上問題,分別得到基本事件如下的兩個特點:
(1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。(讓學生交流討論,教師再加以總結、概括)
【設計意圖】讓學生歸納與總結,鼓勵學生用自己的語言表述,從而提高學生的表達能力與數學語言的組織能力
例1從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
師:為了得到基本事件,我們可以按照某種順序,把所有可能的結果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結果。
解:所求的基本事件共有6個:
【設計意圖】由于學生沒有學習排列組合知識,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數這一難點,同時滲透了數形結合及分類討論的數學思想。
師:你能發現前面兩個數學試驗和例1有哪些共同特點嗎?(先讓學生交流討論,然后教師抽學生回答,并在學生回答的基礎上再進行補充)
試驗一中所有可能出現的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現的可能性相等,都是;
試驗二中所有可能出現的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現的可能性相等,都是;
例1中所有可能出現的.基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現的可能性相等,都是;
經概括總結后得到:
①試驗中所有可能出現的基本事件只有有限個;②每個基本事件出現的可能性相等。
我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。
【設計意圖】學生在合作交流的探究氛圍中思考、質疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納問題的能力。
3、概念深化,加深理解
試驗“向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的”。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。
試驗“某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環’。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環……命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。
【設計意圖】這兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學難點,培養學生思維的深刻性與批判性。
4、觀察比較推導公式
【設計意圖】學生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數學知識形成的發生與發展的過程,體現具體到抽象、從特殊到一般的數學思想,同時讓學生感受數學化歸思想的優越性和這一做法的合理性。
師:我們在使用古典概型的概率公式時,應該還要注意些什么呢?(先讓學生自由說,教師再加以歸納)在使用古典概型的概率公式時,應該注意:
①要判斷該概率模型是不是古典概型;
②要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。
【設計意圖】深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
5、應用與提高
【設計意圖】本題通過學生的觀察比較,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸使學生養成自主探究能力。同時培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣。
6、知識梳理課堂小結
1、本節課你學習到了哪些知識?
2、本節課滲透了哪些數學思想方法?
7、作業布置
1、閱讀本節教材內容
2、必做題課本130頁練習第1,2題,課本134頁習題3。2A組第4題
3、選做題課本134頁習題B組第1題
8、教學反思
本節課的教學設計以“問題串”的方式呈現為主,教學過程中師生共同合作,體驗古典概型的特點,公式的生成、發現,把“數學發現”的權力還給學生,讓學生感受知識形成的過程,獲得數學發現的體驗。將學習的主動權較完整地交還給學生。本節課始終本著在教師的引導下,學生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學效果。構建利于學生學習的有效教學情境,較好地拓展師生的活動空間,符合新課程的理念。
高二上冊數學教學計劃 篇2
一、教材分析。
1、教材地位、作用。
本節課的內容選自《普通高中課程標準實驗教科書數學必修3(A)版》第三章中的第3.2.1節古典概型。它安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、學情分析。
學生基礎一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節上不完備,反映在解題中就是思維不慎密,過程不完整。
二、教學目標。
1、知識與技能目標。
(1)理解等可能事件的概念及概率計算公式。
(2)能夠準確計算等可能事件的概率。
2、過程與方法。
根據本節課的知識特點和學生的認知水平,教學中采用探究式和啟發式教學法,通過生活中常見的實際問題引入課題,層層設問,經過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。
3、情感態度與價值觀。
概率問題與實際生活聯系緊密,學生通過概率知識的學習,可以更好的理解隨機現象的本質,掌握隨機現象的規律,科學地分析、解釋生活中的一些現象,初步形成實事求是的科學態度和鍥而不舍的求學精神。
三、重點、難點。
1、重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。
四、教學過程。
1、創設情境,提出問題。
師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?
通過這個同學們經常會遇到的問題,引導學生合作探索新知識,符合“學生為主體,老師為主導”的現代教育觀點,也符合學生的認知規律。隨著新問題的提出,激發了學生的求知欲望,使課堂的有效思維增加。
2、抽象思維。形成概念、
師:考察試驗一“拋擲一枚質地均勻的骰子”,有幾種不同的結果,結果分別有哪些?
生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。
師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。
師:考察試驗二“拋擲一枚質地均勻的硬幣”有哪些基本事件?
生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。
師:那基本事件有什么特點呢?
問題:
(1)在“拋擲一枚質地均勻的骰子”試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎?
(2)事件“出現偶數點”包含了哪幾個基本事件?
由如上問題,分別得到基本事件如下的兩個特點:
(1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
(讓學生交流討論,教師再加以總結、概括)
讓學生歸納與總結,鼓勵學生用自己的語言表述,從而提高學生的表達能力與數學語言的組織能力
例1:從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
師:為了得到基本事件,我們可以按照某種順序,把所有可能的結果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結果。
解:所求的基本事件共有6個:
____________________________________________________________________________________。
由于學生沒有學習排列組合知識,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數這一難點,同時滲透了數形結合及分類討論的數學思想。
師:你能發現前面兩個數學試驗和例1有哪些共同特點嗎?(先讓學生交流討論,然后教師抽學生回答,并在學生回答的基礎上再進行補充)
試驗一中所有可能出現的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現的可能性相等,都是;
試驗二中所有可能出現的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現的可能性相等,都是;
例1中所有可能出現的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現的可能性相等,都是;
經概括總結后得到:
①試驗中所有可能出現的基本事件只有有限個;
②每個基本事件出現的可能性相等。
我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。
學生在合作交流的探究氛圍中思考、質疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納問題的能力。
3、概念深化,加深理解。
試驗“向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的”。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。
試驗“某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環’。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環……命中5環和不中環的'出現不是等可能的,即不滿足古典概型的第二個條件。
這兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學難點,培養學生思維的深刻性與批判性。
4、觀察比較,推導公式。
師:在古典概型下,隨機事件出現的概率如何計算?(讓學生討論、思考交流)
生:試驗二中,出現各個點的概率相等,即
P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)
由概率的加法公式,得
P(“1點”)+P(“2點”)+P(“3點”)+P(“4點”)+P(“5點”)+P(“6點”)=P(必然事件)=1
因此P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=
進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,
P(“出現偶數點”)=P(“2點”)+P(“4點”)+P(“6點”)=++==
P(“出現偶數點”)=?=
師:根據上述試驗,你能概括總結出,古典概型計算任何事件的概率計算公式嗎?
生:_________________________________________________________________。
學生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數學知識形成的發生與發展的過程,體現具體到抽象、從特殊到一般的數學思想,同時讓學生感受數學化歸思想的優越性和這一做法的合理性。
師:我們在使用古典概型的概率公式時,應該還要注意些什么呢?(先讓學生自由說,教師再加以歸納)在使用古典概型的概率公式時,應該注意:
①要判斷該概率模型是不是古典概型;
②要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
5、應用與提高。
例2:單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考查的內容,他可以選擇惟一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
解:這是一個古典概型,因為試驗的可能結果只有4個:選擇A、選擇B、選擇C、選擇D,從而由古典概型的概率計算公式得:
探究:在標準化考試中既有單選題又有不定項選擇題,不定項選擇題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?
解:這是一個古典概型,因為試驗的可能結果只有15個:選擇A、選擇B、選擇C、選擇D,選擇AB、選擇AC、選擇AD、選擇BC、選擇BD、選擇CD、選擇ABC、選擇ABD、選擇ACD、選擇BCD、選擇ABCD,從而由古典概型的概率計算公式得:
P(“答對”)=1/15
解決了課前提出的思考題,讓學生明確解決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。
例3:同時擲兩個骰子,計算:
(1)一共有多少種不同的結果?
(2)其中向上的點數之和是5的結果有多少種?
(3)向上的點數之和是5的概率是多少?
(教師先讓學生獨立完成,再抽兩位不同答案的學生回答)
學生1:
①所有可能的結果是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種。
②向上的點數之和為5的結果有2個,它們是(1,4)(2,3)。
③向上點數之和為5的結果(記為事件A)有2種,因此,由古典概型的概率計算公式可得
學生2:
①擲一個骰子的結果有6種,我們把兩個骰子標上記號1,2以便區分,由于1號骰子的每一個結果都可與2號骰子的任意一個結果配對,組成同時擲兩個骰子的一個結果,我們可以用列表法得到(如圖),其中第一個數表示1號骰子的結果,第二個數表示2號骰子的結果。
由表中可知同時擲兩個骰子的結果共有36種。
②在上面的所有結果中,向上的點數之和為5的結果有4種:(1,4),(2,3),(3,2),(4,1)。
③由于所有36種結果是等可能的,其中向上點數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
師:上面同一個問題為什么會有兩種不同的答案呢?(先讓學生交流討論,教師再抽學生回答)
生:答案1是錯的,原因是其中構造的21個基本事件不是等可能發生的,因此就不能用古典概型的概率公式求解。
師:我們今后用古典概型的概率公式求解時,特別要驗證“每個基本事件出現是等可能的”這個條件,否則計算出的概率將是錯誤的。
本題通過學生的觀察比較,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸使學生養成自主探究能力。同時培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣。
6、知識梳理,課堂小結。
(1)本節課你學習到了哪些知識?
(2)本節課滲透了哪些數學思想方法?
7、作業布置。
(1)閱讀本節教材內容
(2)必做題課本130頁練習第1,2題,課本134頁習題3。2A組第4題
(3)選做題課本134頁習題B組第1題
8、教學反思。
本節課的教學設計以“問題串”的方式呈現為主,教學過程中師生共同合作,體驗古典概型的特點,公式的生成、發現,把“數學發現”的權力還給學生,讓學生感受知識形成的過程,獲得數學發現的體驗。將學習的主動權較完整地交還給學生。
本節課始終本著在教師的引導下,學生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學效果。構建利于學生學習的有效教學情境,較好地拓展師生的活動空間,符合新課程的理念。
高二上冊數學教學計劃 篇3
一、教材分析
在現實世界中,隨機現象是廣泛存在的,而隨機現象中存在著一定的規律性,從而使我們可以運用數學方法來定量地研究隨機現象;本節課正是引導學生從數量這一側面研究隨機現象的規律性。隨機事件的概率在實際生活中有著廣泛的應用,諸如自動控制、通訊技術、軍事、氣象、水文、地質、經濟等領域的應用非常普遍;通過對這一知識點的學習運用,使學生了解偶然性寓于必然之中的辯證唯物主義思想,學習和體會數學的奇異美和應用美.
二、學情分析
求隨機事件的概率,學生在初中已經接觸到一些類似的問題,所以在教學中學生并不感到陌生,關鍵是引導學生對“隨機事件的概率”這個重點、難點的掌握和突破,以及如何有具體問題轉化為抽象的概念。
三、教學設計思路
對于“隨機事件的概率”,采用實驗探究和理論探究,通過設置問題情景、探究以及知識的遷移,側重于學生的“思”、“探”、“究”的自主學習,促使學生多“動”,并利用powerpoint制作課件,激發學生興趣,爭取使學生有更多自主支配的時間.
四、教學目標:
(1)知識與技能:使學生了解隨機事件的定義和隨機事件的概率;
(2)過程與方法:提高學生分析問題和解決問題的能力,培養學生的數學化歸思想;
(3)情感與價值:使學生認識到研究隨機事件的概率是現實生活的需要,樹立辯證唯物主義觀點.
教學過程:
一、情境導入:
1、(出示幻燈片1)請同學們思考下列所述各事件發生的可能性(學生觀察思考、感知對象??學生活動)
(師生共同活動)1943年以前,在大西洋上英美運輸船隊常常受到德國潛艇的襲擊,當時,英美兩國限于實力,無力增派更多的護航艦,一時間,德軍的“潛艇戰”搞得盟軍焦頭爛額.
為此,有位美國海軍將領專門去請教了幾位數學家,數學家們運用概率論分析后得出,艦隊與敵潛艇相遇是一個隨機事件,從數學角度來看這一問題,它具有一定的規律性.一定數量的`船(為100艘)編隊規模越小,編次就越多(為每次20艘,就要有5個編次),編次越多,與敵人相遇的概率就越大.美國海軍接受了數學家的建議,命令艦隊在指定海域集合,再集體通過危險海域,然后各自駛向預定港口.結果奇跡出現了:盟軍艦隊遭襲被擊沉的概率由原來的25%降為1%,大大減少了損失,保證了物資的及時供應.
2、(出示幻燈片2)
下列事件中,哪些是必然事件?哪些是不可能事件?哪些是隨機事件?(應用概念判斷,加強理解學生活動)
3、請同學們再分別舉出一些例子(理論聯系實際學生動手寫,然后投影)
二、觀察探索:由同學們自己動手做拋擲硬幣的實驗,觀察正面朝上事件的規律性。
歷史上曾有人作過拋擲硬幣的大量重復試驗,結果如下(出示幻燈片3)
拋擲次數(n) 正面向上次數(m)頻率(m/n)
20xx 1061 0.5181
4040 20xx 0.5069
12000 6019 0.5016
24000 12012 0.5005
30000 14984 0.4996
72088 36124 0.5011
我們可以看到,當拋擲硬幣的次數很多時,出現正面的頻率值m/n是穩定的,接近于常數0.5,在它附近擺動.(出示幻燈片4)一般地,在大量重復進行同一試驗時,事件a發生的頻率m/n總接近于某個常數,在它的附近擺動,這時就把這個常數叫做事件a的概率,記作p(a). 教師強調:對于概率的定義,應注意以下幾點:
(1)求一個事件的概率的基本方法是通過大量的重復試驗;
(2)只有當頻率在某個常數附近擺動時,這個常數才叫做事件a的概率;
(3)概率是頻率的穩定值,而頻率是概率的近似值;
(4)概率反映了隨機事件發生的可能性的大小;
(5)必然事件的概率為1,不可能事件的概率為0,
因此0≤p(a)≤1;
2、例題分析:(出示幻燈片5)對某電視機廠生產的電視機進行抽樣檢測的數據如下:
抽取臺數 50 100 200 300 500 1000
優等品數 40 92 192 285 478 954
優等品頻率
(1)計算表中優等品的各個頻率;
(2)該廠生產的電視機優等品的概率是多少?
(學生自己完成,然后回答,教師通過投影再給出答案,比較后加以肯定)
四:總結提煉:1、隨機事件的概念,2、隨機事件的概率,3、概率的性質:0≤p(a)≤1(由學生歸納總結,老師補充.)
五、布置作業(出示幻燈片6)
教學反思:
這節課主要讓學生能夠通過拋擲硬幣的實驗,獲得正面向上的頻率,知道大量重復實驗時頻率可作為事件發生概率的估計值。在具體情境中了解概率的意義,從數學的角度去思考,認識概率是描述不確定現象規律的數學模型,發展隨機觀念。具體的方法應用圖表以及多媒體等工具,逐步認識到隨機現象的規律性;體會在解決問題的過程中與他人合作的重要性。讓學生在解決問題的過程中形成實事求是的態度以及進行質疑和獨立思考的習慣,并積極參與對數學問題的討論,敢于發表自己的觀點,從交流中獲益。
概率研究隨機事件發生的可能性的大小。這里既有隨機性,更有規律性,這是學生理解的重點與難點。根據學生的年齡特點和認知水平,本節課就從學生熟悉并感興趣的拋擲硬幣入手,讓學生親自動手操作,在相同條件下重復進行試驗,在實踐過程中形成對隨機事件的隨機性以及隨機性中表現出的規律性的直接感知,從而形成對概念的正確理解。在課堂上學生們做實驗十分積極,基本上完成了我的預先設想。比如在事件的分析中,因為比較簡單,學生易于接受,回答問題積極踴躍,在做實驗中,有做的,有記錄的,分工合作,有條不紊,熱鬧而不混亂,回答實驗結果時,大膽仔細,數據到位,在總結規律時,也能踴躍發言,各抒己見,思慮很敏捷,說明學生真的在認真思考問題。總之,效果明顯。但是在具體的問題上還有不盡如人意的地方,比如學生們做的實驗結果并沒有在1/2左右徘徊,有的組差距還比較大;因為時間問題,實驗做的并不很仔細,對實驗的分析沒有想設計中那么完美等等.
教完之后,很多想法。我想下次如果再上這節課時,將給學生更多時間,讓學生們更充分的融會到自由學習,自主思考,交流合作中提煉結果的學習氛圍中。
在課堂上也有不如意的地方。教學大量使用多媒體,教師很少板書,可能使學生對個別問題的印象不很深刻,在學生做出實驗得到數據后,對數據的分析過快,對學生的分析點評不很到位,總結不多,這幾點沒有達到事先的教學設計。原因是多方面的,這需要以后教學中改進。
高二上冊數學教學計劃 篇4
教學目標:
1、知識與技能
(1)了解算法的含義,體會算法的思想;
(2)能夠用自然語言敘述算法;
(3)掌握正確的算法應滿足的要求;
(4)會寫出解線性方程(組)的算法;
(5)會寫出一個求有限整數序列中的最大值的算法.
2、過程與方法
(1)通過求解二元一次方程組,體會解方程的一般性步驟,從而得到一個解二元一次方程組的步驟,這些步驟就是算法,不同的問題有不同的算法;
(2)同一個問題也可能有多個算法,能模仿求解二元一次方程組的步驟,寫出一個求有限整數序列中的最大值的算法.
3、情感與價值觀
通過本節的學習,對計算機的算法語言有一個基本的了解;明確算法的要求,認識到計算機是人類征服自然的一個有力工具,進一步提高探索、認識世界的能力.
教學重點、難點:
重點:算法的含義,解二元一次方程組、判斷一個數為質數和利用“二分法”求方程近似解的算法設計.
難點:把自然語言轉化為算法語言.
教學過程:
(一)創設情景、導入課題
問題1:把大象放入冰箱分幾步?
第一步:把冰箱門打開;
第二步:把大象放進冰箱;
第三步:把冰箱門關上.
問題2:指出在家中燒開水的過程分幾步?(略)
問題3:如何求一元二次方程的解?
第一步:計算;
第二步:如果,;
如果,方程無解
第三步:下結論.輸出方程的根或無解的信息.
注意:在以上三個問題的求解過程中,老師要緊扣算法定義,帶領學生總結,反復強調,使學生體會以下幾點:
①有窮性:步驟是有限的,它應在有限步操作之后停止,而不能是無限地執行下去。
②確定性:每一步應該是確定的并且能有效地執行且得到確定的結果,而不應當是模棱兩可的。
③邏輯性:從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,只有執行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題。
④不唯一性:求解某一個問題的算法不一定只有唯一的一個,可以有不同的算法。
⑤普遍性:很多具體的問題,都可以設計合理的算法去解決。
注:其他還有輸入性、輸出性等特征,結論不固定.
提問:算法是如何定義?
(二)師生互動、講解新課
x-2y=-1①
回顧(課本P2內容):寫出解二元一次方程組2x+y=1②的算法.
解:第一步,②×2+①,得5x=1;③
第二步,解③,得x=;
第三步,②-①×2得5y=3;④
第四步,解④,得y=;
第五步,得到方程組的解為x=;y=。
思考1:你能寫出求解一般的二元一次方程組的步驟嗎?
上題的算法是由加減消元法求解的,這個算法也適合一般的二元一次方程組的解法.
對于一般的二元一次方程組可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得;③
第二步,解③,得.
第三步,②×a1-①×a2,得;④
第四步,解④,得;
第五步,得到方程組的解為
(高斯消去法)
思考2:根據上述分析,用加減消元法解二元一次方程組,可以分為五個步驟進行,這五個步驟就構成了解二元一次方程組的一個“算法”.我們再根據這一算法編制計算機程序,就可以讓計算機來解二元一次方程組.那么解二元一次方程組的算法包括哪些內容?
思考3:一般地,算法是由按照一定規則解決某一類問題的基本步驟組成的.
你認為:
(1)這些步驟的個數是有限的還是無限的?
(2)每個步驟是否有明確的計算任務?
總結:在數學中,按照一定規則解決某一類問題的明確和有限的步驟稱為算法.
算法(algorithm)一詞出現于12世紀,源于算術(algorism),即算術方法.指的是用阿拉伯數字進行算術運算的過程.在數學中,算法通常是指按照一定的規則解決某一類問題的明確的和有限的步驟.現在,算法通常可以編成計算機程序,讓計算機執行并解決問題.后來,人們把它推廣到一般,把進行某一工作的方法和步驟稱為算法.
廣義地說,算法就是做某一件事的步驟或程序.菜譜是做菜肴的算法,洗衣機的使用說明書是操作洗衣機的算法,歌譜是一首歌曲的算法.在數學中,主要研究計算機能實現的算法,即按照某種機械程序步驟一定可以得到結果的解決問題的程序.比如解方程的算法、函數求值的算法、作圖的算法,等等.
(三)例題剖析,鞏固提高
例1(課本P3例1):如果讓計算機判斷7是否為質數,如何設計算法步驟?
算法:
第一步,用2除7,得到余數1,所以2不能整除7.
第二步,用3除7,得到余數1,所以3不能整除7.
第三步,用4除7,得到余數3,所以4不能整除7.
第四步,用5除7,得到余數2,所以5不能整除7.
第五步,用6除7,得到余數1,所以6不能整除7.
因此,7是質數.
課堂練習1:
整數89是否為質數?如果讓計算機判斷89是否為質數,按照上述算法需要設計多少個步驟?
思考4:用2~88逐一去除89求余數,需要87個步驟,這些步驟基本是重復操作,我們可以按下面的思路改進這個算法,減少算法的步驟.
(1)用i表示2~88中的任意一個整數,并從2開始取數;
(2)用i除89,得到余數r.若r=0,則89不是質數;若r≠0,將i用i+1替代,再執行同樣的操作;
(3)這個操作一直進行到i取88為止.
你能按照這個思路,設計一個“判斷89是否為質數”的算法步驟嗎?
算法設計:
第一步,令i=2;
第二步,用i除89,得到余數r;
第三步,若r=0,則89不是質數,結束算法;若r≠0,將i用i+1替代;
第四步,判斷“i>88”是否成立?若是,則89是質數,結束算法;否則,返回第二步.
探究:一般地,判斷一個大于2的整數是否為質數的算法步驟如何設計?
在中央電視臺幸運52節目中,有一個猜商品價格的環節,竟猜者如在規定的時間內大體猜出某種商品的價格,就可獲得該件商品.現有一商品,價格在0~8000元之間,采取怎樣的策略才能在較短的時間內說出比較接近的答案呢?
例2、一群小兔一群雞,兩群合到一群里,要數腿共48,要數腦袋整17,多少只小兔多少只雞?
算法1:S1首先計算沒有小兔時,小雞的數為:17只,腿的總數為34條。
S2再確定每多一只小兔、減少一只小雞增加的腿數2條。
S3再根據缺的腿的條數確定小兔的數量:(48-34)/2=7只
S4最后確定小雞的數量:17-7=10只.
算法2:S1首先設只小雞,只小兔。
S2再列方程組為:
S3解方程組得:
S4指出小雞10只,小兔7只。
算法3:S1首先設只小雞,則有只小兔
S2列方程
S3解方程得,則
S4指出小雞10只,小兔7只.
算法4:S1“請一名馴獸師”所有小雞抬一條腿,所有小兔抬兩條腿
S2有小兔只
S3有小雞只
S4指出小雞10只,小兔7只.
算法5:S1有小兔只
S2有小雞只
二分法:
對于區間[a,b]上連續不斷,且f(a)f(b)<0的函數y=f(x),通過不斷地把函數f(x)的零點所在的.區間一分為二,使區間的兩個端點逐步逼近零點,而得到零點近似值的方法叫做二分法.
例3(課本P4例2):寫出用“二分法”求方程的近似解的算法.
算法分析:
令f(x)=,則方程的解就是函數f(x)的零點.
第一步,令f(x)=,給定精確度d.
第二步,確定區間[a,b],滿足f(a)·f(b)<0.
第三步,取區間中點.
第四步,若f(a)·f(m)<0,則含零點的區間為[a,m],否則,含零點的區間為[m,b].
將新得到的含零點的區間仍記為[a,b];
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
(四)課堂小結,鞏固反思
1、算法的主要特點:
(1)有限性:一個算法在執行有限步后必須結束;
(2)確切性:算法的每一個步驟和次序必須是確定的;
(3)輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件.所謂0個輸入是指算法本身定出了初始條件.
(4)輸出:一個算法有1個或多個輸出,以反映對輸入數據加工后的結果.沒有輸出的算法是毫無意義的.
2、計算機解決任何問題都要依賴算法,算法是建立在解法基礎上的操作過程,算法不一定要有運算結果.設計一個解決某類問題的算法的核心內容是將解決問題的過程分解為若干個明確的步驟,即算法,它沒有一個固定的模式,但有以下幾個基本要求:
(1)符合運算規則,計算機能操作;
(2)每個步驟都有一個明確的計算任務;
(3)對重復操作步驟作返回處理;
(4)步驟個數盡可能少;
(5)每個步驟的語言描述要準確、簡明.
【高二上冊數學教學計劃】相關文章:
高二上冊數學教學計劃3篇04-28
高二英語上冊教學計劃05-07
高二的數學教學計劃02-15
高二數學的教學計劃05-07
高二年級上冊數學教學計劃范文05-06
數學上冊教學計劃05-01
上冊數學教學計劃02-17
數學上冊教學計劃02-09
上冊數學的教學計劃04-02
高二數學教學計劃15篇10-10