重囗另类BBWSeⅹHD,av狼论坛,精品一卡2卡三卡4卡乱码理论,体育生gv老师浪小辉3p警察

A note on Marino-Vafa formula

時間:2023-04-29 22:32:00 數理化學論文 我要投稿
  • 相關推薦

A note on Marino-Vafa formula

Hodge integrals over moduli spaces of curves appear naturally during the localization procedure in computation of Gromov-Witten invariants. A remarkable formula of Marino-Vafa expresses a generation function of Hodge integrals via some combinatorial and algebraic data seemingly unrelated to these apriori algebraic geometric objects. We prove in this paper by directly expanding the formula and estimating the involved terms carefully that except a specific type all the other Hodge integrals involving up to three Hodge classes can be calculated from this formula. This implies that amazingly rich information about moduli spaces and Gromov-Witten invariants is encoded in this complicated formula. We also give some low genus examples which agree with the previous results in literature. Proofs and calculations are elementary as long as one accepts Mumford relations on the reductions of products of Hodge classes.

作 者: LU Wenxuan   作者單位: Department of Mathematics, Tsinghua University, Beijing 100084, China  刊 名: 中國科學A輯(英文版)  SCI 英文刊名: SCIENCE IN CHINA (MATHEMATICS)  年,卷(期): 2006 49(1)  分類號: O1  關鍵詞: Hodge integrals   Gromov-Witten invariants   Marino-Vafa formula   Mumford relations  

【A note on Marino-Vafa formula】相關文章:

Density-functional formula for strongly correlated systems04-26

Twenty-word formula (英語寫作20字訣)05-04

A NOTE ON THE MEAN CURVATURE FLOW IN RIEMANNIAN MANIFOLDS04-26

主站蜘蛛池模板: 临夏市| 萍乡市| 琼结县| 酒泉市| 五指山市| 荥经县| 淮滨县| 买车| 明光市| 枣庄市| 上饶县| 台中县| 肥西县| 得荣县| 海林市| 阳新县| 龙井市| 加查县| 定西市| 巍山| 深水埗区| 施秉县| 富民县| 澄城县| 和田县| 澎湖县| 长顺县| 雅江县| 石渠县| 寿光市| 苏州市| 定兴县| 兴仁县| 东港市| 中西区| 渑池县| 郴州市| 黑龙江省| 犍为县| 霍山县| 温泉县|