重囗另类BBWSeⅹHD,av狼论坛,精品一卡2卡三卡4卡乱码理论,体育生gv老师浪小辉3p警察

初中數學公式總結

時間:2024-09-09 06:03:14 學人智庫 我要投稿
  • 相關推薦

初中數學公式總結

數學公式是人們在研究自然界物與物之間時發現的一些聯系,并通過一定的方式表達出來的一種表達方法。是表示自然界不同事物之數量之間的或等或不等的聯系,它確切的反映了事物內部和外部的關系,是我們從一種事物到達另一種事物的依據,使我們更好的理解事物的本質和內涵。下面是unjs小編整理的相關內容,歡迎大家閱讀!

初中數學公式總結

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的余角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大于第三邊

16 推論 三角形兩邊的差小于第三邊

17 三角形內角和定理 三角形三個內角的和等于 180°

18 推論 1 直角三角形的兩個銳角互余

19 推論 2 三角形的一個外角等于和它不相鄰的兩個內角的和

20 推論 3 三角形的一個外角大于任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22 邊角邊公理 (SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理 ( ASA) 有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論 (AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理 (SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理 (HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理 1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理 2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 ( 即等邊對等角)

31 推論 1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論 3 等邊三角形的各角都相等,并且每一個角都等于 60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35 推論 1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等于 60° 的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等于 30° 那么它所對的直角邊等于斜邊的一半

38 直角三角形斜邊上的中線等于斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理 1 關于某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

44 定理 3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

46 勾股定理 直角三角形兩直角邊 a 、 b 的平方和、等于斜邊 c 的平方,即 a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三邊長 a 、 b 、 c 有關系 a^2+b^2=c^2 ,那么這個三角形是直角三角形

48 定理 四邊形的內角和等于 360°

49 四邊形的外角和等于 360°

50 多邊形內角和定理 n 邊形的內角的和等于( n-2 ) ×180°

51 推論 任意多邊的外角和等于 360°

52 平行四邊形性質定理 1 平行四邊形的對角相等

53 平行四邊形性質定理 2 平行四邊形的對邊相等

54 推論 夾在兩條平行線間的平行線段相等

55 平行四邊形性質定理 3 平行四邊形的對角線互相平分

56 平行四邊形判定定理 1 兩組對角分別相等的四邊形是平行四邊形

57 平行四邊形判定定理 2 兩組對邊分別相等的四邊形是平行四邊形

58 平行四邊形判定定理 3 對角線互相平分的四邊形是平行四邊形

59 平行四邊形判定定理 4 一組對邊平行相等的四邊形是平行四邊形

60 矩形性質定理 1 矩形的四個角都是直角

61 矩形性質定理 2 矩形的對角線相等

62 矩形判定定理 1 有三個角是直角的四邊形是矩形

63 矩形判定定理 2 對角線相等的平行四邊形是矩形

64 菱形性質定理 1 菱形的四條邊都相等

65 菱形性質定理 2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

66 菱形面積 = 對角線乘積的一半,即 S= ( a×b ) ÷2

67 菱形判定定理 1 四邊都相等的四邊形是菱形

68 菱形判定定理 2 對角線互相垂直的平行四邊形是菱形

69 正方形性質定理 1 正方形的四個角都是直角,四條邊都相等

70 正方形性質定理 2 正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71 定理 1 關于中心對稱的兩個圖形是全等的

72 定理 2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

73 逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

74 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75 等腰梯形的兩條對角線相等

76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77 對角線相等的梯形是等腰梯形

78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79 推論 1 經過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論 2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L= ( a+b ) ÷2 S=L×h

83 (1) 比例的基本性質 如果 a:b=c:d, 那么 ad=bc, 如果 ad=bc, 那么 a:b=c:d

84 (2) 合比性質 如果 a / b=c / d, 那么 (a±b) / b=(c±d) / d

85 (3) 等比性質 如果 a / b=c / d=…=m / n(b+d+…+n≠0), 那么 (a+c+…+m) / (b+d+…+n)=a / b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91 相似三角形判定定理 1 兩角對應相等,兩三角形相似( ASA )

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理 2 兩邊對應成比例且夾角相等,兩三角形相似( SAS )

94 判定定理 3 三邊對應成比例,兩三角形相似( SSS )

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

96 性質定理 1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

97 性質定理 2 相似三角形周長的比等于相似比

98 性質定理 3 相似三角形面積的比等于相似比的平方

99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

[2017初中數學公式總結]

【初中數學公式總結】相關文章:

初中數學公式08-09

初中數學公式定理05-31

初中數學公式定理大全10-28

高中數學公式10-15

小學數學公式運算規則08-26

五年級數學公式06-06

小學數學植樹問題常見數學公式07-18

小學五年級數學公式09-26

數學公式個人簡歷表格模板下載05-31

五年級所有植樹問題的數學公式03-06

主站蜘蛛池模板: 永福县| 额尔古纳市| 桦川县| 嵊泗县| 定结县| 大埔县| 仪征市| 巩留县| 威宁| 韶关市| 景宁| 高青县| 合川市| 甘孜| 长治市| 吉林省| 虹口区| 临江市| 永安市| 乌审旗| 勃利县| 宽城| 卢龙县| 阳山县| 泗洪县| 阿荣旗| 边坝县| 清镇市| 三门县| 易门县| 洛宁县| 叶城县| 柳江县| 梁山县| 马山县| 汶川县| 敦煌市| 金昌市| 鹤岗市| 绵阳市| 南漳县|