重囗另类BBWSeⅹHD,av狼论坛,精品一卡2卡三卡4卡乱码理论,体育生gv老师浪小辉3p警察

高中立體幾何知識點總結

時間:2024-09-27 04:29:27 總結 我要投稿

高中立體幾何知識點總結

  總結是事后對某一階段的學習或工作情況作加以回顧檢查并分析評價的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此好好準備一份總結吧。總結一般是怎么寫的呢?下面是小編整理的高中立體幾何知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

高中立體幾何知識點總結

  平面

  通常用一個平行四邊形來表示。

  平面常用希臘字母α、β、γ…或拉丁字母M、N、P來表示,也可用表示平行四邊形的兩個相對頂點字母表示,如平面AC。

  在立體幾何中,大寫字母A,B,C,…表示點,小寫字母,a,b,c,…l,m,n,…表示直線,且把直線和平面看成點的集合,因而能借用集合論中的符號表示它們之間的關系,例如:

  a) A∈l—點A在直線l上;Aα—點A不在平面α內;

  b) lα—直線l在平面α內;

  c) aα—直線a不在平面α內;

  d) l∩m=A—直線l與直線m相交于A點;

  e) α∩l=A—平面α與直線l交于A點;

  f) α∩β=l—平面α與平面β相交于直線l。

  平面的基本性質

  公理1如果一條直線上的兩點在一個平面內,那么這條直線上所有的點都在這個平面內;

  公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線;

  公理3經過不在同一直線上的三個點,有且只有一個平面。

  根據上面的公理,可得以下推論,

  推論1經過一條直線和這條直線外一點,有且只有一個平面;

  推論2經過兩條相交直線,有且只有一個平面。

  推論3經過兩條平行直線,有且只有一個平面。

  公理4平行于同一條直線的兩條直線互相平行。

  拓展閱讀:高中數學立體幾何解題技巧

  1.平行、垂直位置關系的論證的策略:

  (1)由已知想性質,由求證想判定,即分析法與綜合法相結合尋找證題思路。

  (2)利用題設條件的性質適當添加輔助線(或面)是解題的常用方法之一。

  (3)三垂線定理及其逆定理在高考題中使用的頻率最高,在證明線線垂直時應優先考慮。

  2.空間角的計算方法與技巧:

  主要步驟:一作、二證、三算;若用向量,那就是一證、二算。

  (1)兩條異面直線所成的角①平移法:②補形法:③向量法:

  (2)直線和平面所成的角

  ①作出直線和平面所成的角,關鍵是作垂線,找射影轉化到同一三角形中計算,或用向量計算。

  ②用公式計算。

  (3)二面角

  ①平面角的作法:(i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。

  ②平面角的計算法:

  (i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;(ii)射影面積法;(iii)向量夾角公式。

  3.空間距離的計算方法與技巧:

  (1)求點到直線的距離:經常應用三垂線定理作出點到直線的垂線,然后在相關的三角形中求解,也可以借助于面積相等求出點到直線的距離。

  (2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉化為線面距離求解(這種情況高考不做要求)。

  (3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質過該點作出平面的垂線,進而計算;也可以利用“三棱錐體積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉化為直線到平面的距離,從而“轉移”到另一點上去求“點到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉化為點到平面的距離來求解。

【高中立體幾何知識點總結】相關文章:

高中立體幾何知識點總結07-27

高中電學知識點總結10-14

高中圓知識點總結08-25

高中化學知識點總結11-06

高中數列知識點總結08-29

高中化學知識點總結09-21

初高中語文知識點總結12-11

高中原電池知識點總結08-10

生物高中必修一知識點總結09-13

高中中國史知識點總結09-21

主站蜘蛛池模板: 富裕县| 靖州| 金阳县| 揭东县| 浦县| 山丹县| 肇庆市| 邵阳市| 淮北市| 汝南县| 嵊泗县| 托克托县| 滦平县| 留坝县| 湛江市| 上杭县| 旅游| 乌鲁木齐县| 商河县| 文化| 克拉玛依市| 东乌珠穆沁旗| 石泉县| 肇州县| 天津市| 师宗县| 青岛市| 宁远县| 东平县| 丰都县| 延边| 舒城县| 宜春市| 峨眉山市| 寻乌县| 石嘴山市| 福鼎市| 婺源县| 南溪县| 织金县| 太保市|