重囗另类BBWSeⅹHD,av狼论坛,精品一卡2卡三卡4卡乱码理论,体育生gv老师浪小辉3p警察

反比例教案

時間:2023-04-25 19:10:45 教案 我要投稿

反比例教案

  作為一位無私奉獻的人民教師,往往需要進行教案編寫工作,借助教案可以提高教學質量,收到預期的教學效果。寫教案需要注意哪些格式呢?以下是小編為大家整理的反比例教案,歡迎大家借鑒與參考,希望對大家有所幫助。

反比例教案

反比例教案1

1.1反比例函數的`定義 1.2反比例函數的圖像與性質 1.3反比例函數的應用

網盤地址http://www.mofile.com/pickup/75s55jut89h7lni/

反比例教案2

  新課改要求變傳統的接受式學習方式為新型的探究式學習方式,就是把學習過程中的分析、發現、探究、創新等認識活動凸顯出來,使學習過程更多地成為學生發現問題、解決問題、探索研究、創新求異的過程。在設計《反比例的意義》時,我考慮到此前學生學習了正比例的意義,對“什么是相關聯的量”、“成正比例的兩個量的特征”已經有了很好的認識,因此我靈活使用教材,對教學內容進行創造性的加工和處理,努力克服教材的局限性,最大限度地為學生拓寬探究學習的空間,提高學生的學習興趣。

  讓學生猜測什么是反比例時,有的'成正比例,還有可能成什么量時,有的學生說,只要這兩種兩關聯的量的比值不一定,就成反比例,有的學生說,那不對,應該是積一定,才成反比例。學生在這個過程中,經歷了猜想、思考、辯論,課堂氣氛很好。

  學生有了學習正比例的基礎,今天學習反比例,非常輕松。

反比例教案3

  【授課內容】

  《反比例》

  【教材理解】

  《反比例的意義》是新課標人教版小學數學六年級下冊第47-48頁的內容。本節課的內容是在教學了成正比例的量的基礎上進行教學的,是前面“比例”知識的深化,是后面學習“用它解決一些簡單正、反比例的實際問題”的基礎,它起著承前啟后的作用,是小學階段比例初步知識教學中的一項重要內容。為此,教學時先引導學生回憶已學過的數量關系,通過舉例、交流,知識遷移,體會生活中存在著大量的反比例的關系,在此基礎上探求新知,最后深化新知。

  【設計理念】

  在教學過程的設計上,首先通過對正比例的復習,直接導入新課教學,揭示課題“反比例”,例題學習,引導學生觀察表中的三種量中的變化規律,通過學生討論交流、自主探究,在教師的引導概括出反比例的意義,然后進一步抽象概括反比例關系式:xy=k(一定),接著運用反比例的知識,判斷兩種量是不是成反比例的量,然后讓學生自己舉例說說生活中的反比例,進一步加深對反比例關系的認識。

  【學情簡介】

  這節課是在學生學習正比例的基礎上進行教學的。教學時充分相信學生、尊重學生,改變傳統的教學模式,學生由被動學習轉化為主動學習,放手讓他們主動去探索出新知識,最大限度地充分發揮學生的主觀主動性。從而使學生學到探究新知的方法,體驗到成功的'喜悅,激起學生學習的興趣。同時采用引探法,引導學生自主探究,培養他們利用已有知識解決新問題的能力。

  【教學目標】

  知識與技能目標:使學生理解反比例關系的意義,能根據反比例的意義正確判斷兩種量是否成反比例。

  能力目標:經歷反比例意義的構建過程,培養發現的能力和歸納概括的能力。

  情感與態度目標:體會反比例與生活之間的聯系,感悟到事物之間相互聯系和相互轉化的辨證唯物主義的觀點。

  【教學重難點】

  重點:理解反比例關系的意義,能根據反比例的意義正確判斷兩種量是否成反比例。

  難點:掌握反比例的特征,能夠正確判斷反比例關系。

  【教學方法】

  小組合作,歸納推理,探究交流

  【教學準備】

  多媒體課件

  【課時安排】

  1課時

  【教學過程】

  (一)復習猜想導入,引出問題。

  1、成正比例的量有什么特征?什么叫正比例關系?

  2、在生活中兩個相關聯的量有的成正比例關系,還可能成什么關系?學生很自然想到反比例,激發學生的學習欲望,問學生想學反比例的哪些知識,學生大膽猜測,對反比例的意義展開合理的猜想。由此導入新課。

  達成目標:猜想導課,激發探究愿望

  (二)共同探索,總結方法。

  1、明確這節課的學習目標:(1)理解反比例的意義,能正確地判斷兩種相關聯的量是不是成反比例的量。(2)經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。

  2、情境導入,學習探究。

  (1)我們先來看一個實驗。

  高度(厘米) 30 20 15 10 5

  底面積(平方厘米) 10 15 20 30 60

  體積(立方厘米)

  提問:根據列表,你從中你發現了什么?

  (2)學生討論交流。

  (3)引導學生回答:表中的兩個量是高度和底面積。

  高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。

  每兩個相對應的數的乘積都是300.

  (4)計算后你又發現了什么?

  每兩個相對應的數的乘積都是300,乘積一定。

  教師小結:我們就說水的高度和體積成反比例關系,水的高度和體積是成反比例的量。

  教師提問:高底面積和體積,怎樣用式子表示他們的關系?板書:高×底面積=水的體積(一定)

  (5)如果用字母x和y表示兩種相關聯的量,用k表示他們的積一定,反比例關系可以用一個什么樣的式子表示?板書:x×y=k(一定)

  小結:通過上面的學習,你認為判斷兩種相關聯的量是否成反比例,關鍵是什么?

  (6)歸納總結反比例的意義。

  (7)比較歸納正反比例的異同點。

  達成目標:比較思想是在小學數學教學中應用十分普遍的數學思想方法,《成反比例的量》是繼《成正比例的量》一課后學習的內容,兩節課的學習內容和學習方法有相似之處,學生從知識的差別中找到同一,也可以從同一中找出差別,學生學習新知識,進行深化拓展,歸納總結。

  (三)運用方法,解決問題。

  1、生活中,哪些相關聯的量成反比例關系,舉例說一說。

  2、課后做一做每天運的噸數和運貨的天數成反比例關系嗎?為什么?

  3、出示反比例圖像,與正比例圖像進行比較學習。

  達成目標:學生利用對反比例概念的理解,判斷相關聯的量是否成反比例,學會分析并進行判斷。

  (四)反饋鞏固,分層練習。

  判斷下面每題中的兩個量是不是成反比例,并說明理由。

  (1)路程一定,速度和時間。

  (2)小明從家到學校,每分走的速度和所需時間。

  (3)平行四邊形面積一定,底和高。

  (4)小林做10道數學題,已做的題和沒有做的題。

  (5)小明拿一些錢買鉛筆,單價和購買的數量。

  達成目標:使學生體會到數學來源于現實生活,又服務于現實生活的特點,體現數學的應用性。

  (五)課堂總結,提升認識

  總結:今天我們學習了什么?(揭示課題—反比例)你有什么收獲?學習中,你要提示大家注意什么?你對今天的學習還有什么疑問嗎?

  【板書設計】 反比例

  高度(厘米) 30 20 15 10 5

  底面積(平方厘米) 10 15 20 30 60

  體積(立方厘米) 300 300 300 300 300

  高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。

  高×底面積=水的體積(一定)

  反比例關系式:x×y=k(一定)

反比例教案4

  一、教學目標

  1.利用反比例函數的知識分析、解決實際問題

  2.滲透數形結合思想,提高學生用函數觀點解決問題的能力

  二、重點、難點

  1.重點:利用反比例函數的知識分析、解決實際問題

  2.難點:分析實際問題中的數量關系,正確寫出函數解析式

  三、例題的意圖分析

  教材第57頁的例1,數量關系比較簡單,學生根據基本公式很容易寫出函數關系式,此題實際上是利用了反比例函數的定義,同時也是要讓學生學會分析問題的方法。

  教材第58頁的例2是一道利用反比例函數的定義和性質來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數學問題的能力,掌握用函數觀點去分析和解決問題的思路。

  補充例題一是為了鞏固反比例函數的有關知識,二是為了提高學生從圖象中讀取信息的能力,掌握數形結合的思想方法,以便更好地解決實際問題

  四、課堂引入

  寒假到了,小明正與幾個同伴在結冰的河面上溜冰,突然發現前面有一處冰出現了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險區。你能解釋一下小明這樣做的道理嗎?

  五、例習題分析

  例1.見教材第57頁

  分析:(1)問首先要弄清此題中各數量間的關系,容積為104,底面積是S,深度為d,滿足基本公式:圓柱的體積=底面積×高,由題意知S是函數,d是自變量,改寫后所得的函數關系式是反比例函數的形式,(2)問實際上是已知函數S的值,求自變量d的取值,(3)問則是與(2)相反

  例2.見教材第58頁

  分析:此題類似應用題中的“工程問題”,關系式為工作總量=工作速度×工作時間,由于題目中貨物總量是不變的.,兩個變量分別是速度v和時間t,因此具有反比關系,(2)問涉及了反比例函數的增減性,即當自變量t取最大值時,函數值v取最小值是多少?

  例1.(補充)某氣球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數,其圖像如圖所示(千帕是一種壓強單位)

  (1)寫出這個函數的解析式;

  (2)當氣球的體積是0.8立方米時,氣球內的氣壓是多少千帕?

  (3)當氣球內的氣壓大于144千帕時,氣球將爆炸,為了安全起見,氣球的體積應不小于多少立方米?

  分析:題中已知變量P與V是反比例函數關系,并且圖象經過點A,利用待定系數法可以求出P與V的解析式,得,(3)問中當P大于144千帕時,氣球會爆炸,即當P不超過144千帕時,是安全范圍。根據反比例函數的圖象和性質,P隨V的增大而減小,可先求出氣壓P=144千帕時所對應的氣體體積,再分析出最后結果是不小于立方米

  六、隨堂練習

  1.京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間的函數關系式為

  2.完成某項任務可獲得500元報酬,考慮由x人完成這項任務,試寫出人均報酬y(元)與人數x(人)之間的函數關系式

  3.一定質量的氧氣,它的密度(kg/m3)是它的體積V(m3)的反比例函數,當V=10時,=1.43,(1)求與V的函數關系式;(2)求當V=2時氧氣的密度

  答案:=,當V=2時,=7.15

反比例教案5

  教學目標:

  1、使學生進一步認識正、反比例的意義,了解正反比例的區別和聯系,更好的把握正、反比例概念的本質。

  2、進一步加深學生對正、反比例意義的理解,使他們能夠從整體上把握各種量之間的比例關系,能根據相關條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

  教學重難點:進一步認識正、反比例的意義,能根據相關條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

  教學準備 :實物投影

  教學預設:

  一、概念復習:

  1、提問:怎樣的兩個量成正、反比例?

  根據學生回答板書字母關系式。

  二、書本練習:

  1、第9題。

  (1)觀察每個表中的數據,討論前三個問題。

  要注意啟發學生根據表數據的變化規律,寫出相應的數量關系式,再進行判斷。

  (2)組織學生討論第四個問題。

  啟發學生根據條件直接寫出關系式,再根據關系式直接作出判斷。

  2、第10題。

  (1)看圖填寫表格。

  (2)求出這幅圖的比例尺,再根據圖像特點判斷圖上距離和實際距離成什么比例,也可以根據相關的計算結果作出判斷。

  要讓學生認識到:同一幅地圖的比例尺一定,所以這幅圖的圖上距離和實際距離成正比例。

  (3)啟發學生運用有關比例尺的知識進行解答。

  3、第11題。

  填寫表格,組織學生對兩個問題進行比較,進一步突出成反比例量的特點。

  4、第12題。

  引導學生說說每題中的哪兩種量是變化的,這兩種量中,一種量變化,另一種量也隨著變化,能不能用相應的數量關系式表示這種變化的規律。

  5、第13題。

  讓學生小組進行討論,教師指導有困難的學生。

  三、補充練習

  1、對比練習:判斷下列說法是否正確。

  (1)圓的周長和圓的半徑成正比例。( )

  (2)圓的面積和圓的半徑成正比例。( )

  (3)圓的面積和圓的`半徑的平方成正比例。( )

  (4)圓的面積和圓的周長的平方成正比例。( )

  (5)正方形的面積和邊長成正比例。( )

  (6)正方形的周長和邊長成正比例。( )

  (7)長方形的面積一定時,長和寬成反比例。( )

  (8)長方形的周長一定時,長和寬成反比例。( )

  (9)三角形的面積一定時,底和高成反比例。( )

  (10)梯形的面積一定時,上底和下底的和與高成反比例。( )

反比例教案6

  教學內容:

  教材第106、107頁例1,例2。

  教學要求:

  1.使學生認識正、反比例應用題的特點,理解、掌握用比例知識解答應用題的解題思路和解題方法,學會正確地解答基本的正、反比例應用題。

  2.進一步培養學生應用知識進行分析、推理的能力,發展學生思維。

  教學重點:

  認識正、反比例應用題的特點。

  教學難點:

  掌握用比例知識解答應用題的解題思路。

  教學過程:

  一、鋪墊孕伏:

  1.判斷下面的量各成什么比例。

  (1)工作效率一定,工作總量和工作時間。

  (2)路程一定,行駛的速度和時間。

  讓學生先分別說出數量關系式,再判斷。

  2.根據條件說出數量關系式,再說出兩種相關聯的量成什么比例,并列出相應的等式。

  (1)一臺機床5小時加工40個零件,照這樣計算,8小時加工64個。

  (2)一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。

  指名學生口答,老師板書。

  3.引入新課。

  從上面可以看出,生產、生活中的一些實際問題,應用比例的知識,也可以根據題意列一個等式。所以,我們以前學過的一些應用題,還可以應用比例的知識來解答。這節課,就學習正、反比例應用題。(板書課題)

  二、自主探究:

  1.教學例1。

  (1)出示例1,讓學生讀題。

  提問:以前我們是怎樣解答的?(板書算式)先求什么,是按怎樣的數量關系式來求的?這道題里哪個數量是不變的量?

  (2)說明:這道題還可以用比例知識解答。

  提問:題里再買幾個同樣的籃球說明什么一定?數量之間有怎樣的關系式,兩種相關聯的.量成什么比例關系?題里兩次籃球個數與總價對應數值各是多少?這兩次對應數值的什么相等?你能根據對應數值的比值相等,列出等式來解答嗎?請大家自己試一試(啟發弄清要設未知數x)。學生練習解題,然后口答,老師板書。追問:按過去的方法是先求什么再解答的?先求單一量的應用題現在用什么比例關系解答的?

  (3)小結:

  提問:誰來說一說,用正比例知識解答這道應用題要怎樣想?怎樣做?指出:先按題意列關系式判斷成正比例,再找出兩種相關聯量里相對應的數值,然后根據正比例關系里比值一定,也就是兩次籃球個數與總價對應數值比的比值相等,列等式解答。

  2.教學改編題。

  出示改變的問題,讓學生說一說題意。請同學們按照例1的方法自己在練習本上解答。同時指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據是什么。

  3.教學例2。

  (1)出示例2,學生讀題。

  提問:以前我們是怎樣解答的?(板書算式)這樣解答先求什么?是按怎樣的數量關系式來求的?(板書:效率時間=總量)這道題里哪個數量是不變的量?

  (2)誰能仿照例l的解題過程,用比例知識來解答例2?請同學們自己來試一試。指名板演,其余學生做在練習本上。學生練習后提問是怎樣想的。效率和時間的對應關系怎樣,檢查列式解答過程,結合提問弄清為什么列成積相等的等式解答。

  (3)提問:按過去的方法是先求什么再解答的?先求總量的應用題現在用什么比例關系解答的?誰來說一說,用反比例關系解答這道應用題是怎樣想,怎樣做的?指出;解答例2要先按題意列出關系式,判斷成反比例,再找出兩種相關聯量里相對應的數值,然后根據反比例關系里積一定,也就是兩次修地下管道相對應數值的乘積相等,列等式解答。

  4.小結解題思路。

  請同學們看一下黑板上例1、例2的解題過程,想一想,應用比例知識解答應用題,是怎樣想怎樣做的?同學們可以相互討論一下,然后告訴大家。指名學生說解題思路。指出:應用比例知識解答應用題,先要判斷兩種相關聯的量成什么比例關系,(板書:判斷比例關系)再找出相關聯量的對應數值,(板書:找出對應數值)再根據正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認為解題時關鍵是什么?(正確判斷成什么比例)怎樣來列出等式?(正比例比值相等,反比例乘積相等)

  三、鞏固練習

  1.做練一練。

  指名兩人板演,其余學生做在練習本上。集體訂正,讓學生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關系,才能根據正比例或反比例的意義正確列式。

  2.做練習十三第1題。

  先自己判斷,小組交流,再集體訂正。

  四、課堂小結

  這節課學習了什么內容?正、反比例應用題要怎樣解答?你還認識了些什么?

  五、布置作業

  完成練習十三第2~6題的解答。

反比例教案7

  一、教學目標

  1.使學生理解并掌握反比例函數的概念

  2.能判斷一個給定的函數是否為反比例函數,并會用待定系數法求函數解析式

  3.能根據實際問題中的條件確定反比例函數的解析式,體會函數的模型思想

  二、重、難點

  1.重點:理解反比例函數的概念,能根據已知條件寫出函數解析式

  2.難點:理解反比例函數的概念

  3.難點的突破方法:

  (1)在引入反比例函數的概念時,可適當復習一下第11章的正比例函數、一次函數等相關知識,這樣以舊帶新,相互對比,能加深對反比例函數概念的理解

  (2)注意引導學生對反比例函數概念的理解,看形式 ,等號左邊是函數y,等號右邊是一個分式,自變量x在分母上,且x的'指數是1,分子是不為0的常數k;看自變量x的取值范圍,由于x在分母上,故取x0的一切實數;看函數y的取值范圍,因為k0,且x0,所以函數值y也不可能為0。講解時可對照正比例函數y=kx(k0),比較二者解析式的相同點和不同點。

  (3) (k0)還可以寫成 (k0)或xy=k(k0)的形式

  三、例題的意圖分析

  教材第46頁的思考題是為引入反比例函數的概念而設置的,目的是讓學生從實際問題出發,探索其中的數量關系和變化規律,通過觀察、討論、歸納,最后得出反比例函數的概念,體會函數的模型思想。

  教材第47頁的例1是一道用待定系數法求反比例函數解析式的題,此題的目的一是要加深學生對反比例函數概念的理解,掌握求函數解析式的方法;二是讓學生進一步體會函數所蘊含的變化與對應的思想,特別是函數與自變量之間的單值對應關系。

  補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數的概念。補充例3是一道綜合題,此題是用待定系數法確定由兩個函數組合而成的新的函數關系式,有一定難度,但能提高學生分析、解決問題的能力。

反比例教案8

  教學目標:使學生對反比例函數和反比 例函數的圖象意義加深理解。

  教學重點:反比例函數 的應用

  教學程序:

  一、新授:

  1、實例1:(1)用含S的代數式 表示P,P是 S的反比例函數嗎?為什么?

  答:P=600s (s0),P 是S的反比例函數。

  (2)、當木板面積為0.2 m2時,壓強是多少?

  答:P=3000Pa

  (3)、如果要求壓強不超過6000Pa,木板的面積至少 要多少?

  答:至少0.lm2。

  (4)、在直角坐標系中,作出相應的`函數 圖象。

  (5)、請利用圖象(2)和(3)作出直觀 解釋,并與同伴進行交流。

  二、做一做

  1、(1)蓄電池的電 壓為定值,使用此電源時,電流I(A)與電阻R()之間的函數關系如圖5-8 所示。

  (2)蓄電池的電壓是多少?你以寫出這一函數的表達式嗎?

  電壓U=36V , I=60k

  2、完成下表,并 回答問題,如果以蓄電池為電源的用電器限制電流不得超過10A,那么用電器的可變電阻應控制在什么范圍內?

  R() 3 4 5 6 7 8 9 10

  I(A )

  3、如圖5-9,正比例函數y=k1x的圖象與反比例函數y=60k 的圖象相交于A、B兩點,其中點A的坐標為(3 ,23 )

  (1)分別寫出這兩個函 數的表達式;

  (2)你能求出點B的坐標嗎?你是怎樣求的?與同伴進行交流;

  隨堂練習:

  P145~146 1、2、3、4、5

  作業:P146 習題5.4 1、2

反比例教案9

  教學目標

  1.使學生理解反比例的意義,掌握成反比例的變化規律,并能初步運用,反比例的意義(參考教案二)。

  2.能正確判斷成正反比例的量,為解答正反比例應用題打下基礎。

  教學重點和難點

  理解反比例的意義,掌握兩種相關聯的量變化規律。

  教學過程設計

  (一)復習準備

  1.(出示幻燈)

  一種練習本的數量和總頁數如下表:

  師:請回答下列問題。

  (1)表中哪個量是固定不變的'量?

  (2)哪兩種量是相關聯的量?它們的變化規律是怎樣的?

  (3)表內相關聯的兩種量成正比例嗎?為什么?

  2.填空。(小黑板(一))

  兩種相關聯的量,一種量變化另一種量也隨著變化,如果這兩種量中________,這兩種量叫做成________的量,它們的關系叫做________關系。

  3.判斷下面各題中兩種量是否成正比例。

  (1)文具盒的單價一定,買文具盒的個數和總價( )。

  (2)水稻產量一定,水稻的種植面積和總產量( )。

  (3)一堆貨物一定,運出的和剩下的( )。

  (4)汽車行駛的速度一定,行駛的時間和路程( )。

  (5)比值一定,比的前項和后項( )。

  可選其中一、二題,說一說為什么?

  師:通過剛才的復習,我們對正比例的意義理解得很好。你們想一想,有正比例就一定有反比例。什么時候成反比例呢?今天我們就學習反比例的意義。(板書課題:反比例的意義)

  (二)學習新課

  1.出示例4。(小黑板(二))

  例4 華豐機械廠加工一批零件,每小時加工的數量和加工的時間如下表:

  (1)分析表,回答下列問題。(幻燈出示)

  ①表中有哪種量?

  ②兩種相關聯的量是如何變化的?

  ③你能說出它們的關系式嗎?

  ④相對應的每兩個數的乘積各是多少?

  ⑤哪種量是固定不變的?

  師:請同學們打開書自學,然后分組討論以上問題。(老師巡視、指導。)

  (2)同學們發言。

反比例教案10

  教學目標

  1.進一步理解正、反比例的意義,弄清它們的聯系和區別,掌握它們的變化規律.

  2.使學生能正確判斷正、反比例.

  教學重點

  正、反比例的聯系和區別.

  教學難點

  能正確判斷正、反比例.

  教學過程()

  一、復習準備

  判斷下面每題中兩種量成正比例還是成反比例.

  1.單價一定,數量和總價.

  2.路程一定,速度和時間.

  3.正方形的邊長和它的面積.

  4.時間一定,工效和工作總量.

  二、新授教學

  (一)出示課題

  教師明確:我們已經初步學習了判斷兩種量是不是成正比例或反比例的關系,這節課通過比較弄清它們有什么相同點和不同點.

  (二)教學例7(課件演示:正反比例的比較)

  例7.觀察下面的兩個表,根據表分別填空.

  表1

  路程(千米)

  5

  10

  25

  50

  100

  時間(時)

  1

  2

  5

  10

  20

  在表1中相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時間和路程成( )關系.

  表2

  速度(千米/時)

  100

  50

  20

  10

  5

  時間(時)

  1

  2

  5

  10

  20

  在表2中相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時間和速度成( )關系.

  1.分組討論、交流.

  2.引導學生討論回答

  (1)從表1中,怎樣知道速度是一定的?根據什么判斷速度和時間成正比例?

  (2)從表2中,怎樣知道路程是一定的'?根據什么判斷速度和時間成反比例?

  3.引導學生總結路程、速度、時間三個量中每兩個量之間的關系.

  速度×時間=路程

  4.練習:判斷下面兩個量成什么比例.

  (1)當速度一定時,路程和時間.

  (2)當路程一定時,速度和時間.

  (3)當時間一定時,路程和速度.

  (三)比較正比例和反比例的關系.(繼續演示課件:正反比例的比較)

  討論填表:正、反比例異同點

  相同點:都有兩種相關聯的量,一種量隨著另一種量變化.

  不同點:正比例是變化方向相同,一種量擴大或縮小,另一種量也擴大或縮小.相對應的每兩個數的比值(商)是一定的.反比例是變化方向相反,一種量擴大(縮小),另一種量反而縮小(擴大).相對應的每兩個數的積是一定的.

  三、課堂小結

  今天我們學習了哪些知識?你還有什么問題嗎?

  四、鞏固練習

  (一)判斷單價、數量和總價中一種量一定,另外兩種量成什么比例.為什么?

  1.單價一定,數量和總價成( ).

  2.總價一定,單價和數量成( ).

  3.數量一定,總價和單價成( ).

  (二)從汽車每次運貨噸數、運貨的次數和運貨的總噸數這三種量中,你能找出哪幾種比例關系?

  五、課后作業

  一個單位食堂每天用大米的數量、用的天數和大米的總量如下表.

  表1

  在表1中,相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,大米的總量和用的天數成( )關系.

  表2

  在表2中,相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,每天用的數量和用的天數成( )關系.

  六、板書設計

  正比例和反比例的比較

  相同點

  1.都有兩種相關聯的量.

  2.一種量隨著另一種量變化.

  不同點

  1.變化方向相同,一種量擴大或縮小,另一種量也擴大或縮小.

  2.相對應的每兩個數的比值(商)是一定的.

  1.變化方向相反,一種量擴大(縮小),另一種量反而縮小(擴大).

  2.相對應的每兩個數的積是一定的.

  探究活動

  靈活判斷

  活動目的

  1.理解正反比例的意義.

  2.能根據正反比例的意義,正確判斷兩種量是否成比例,成什么比例.

  活動過程

  1.教師出示思考題目:

  (1)正方形的邊長和面積是否成比例?

  (2)圓的面積和半徑是否成比例?

  2.學生分小組討論.

  3.學生分小組匯報討論結果.

  4.師生共同小結并總結規律.

【反比例教案】相關文章:

數學反比例教案03-25

反比例的意義教案04-01

《成反比例的量》教案08-26

《反比例》數學教案02-17

正比例和反比例的比較教案(精選12篇)10-19

反比例函數的圖象與性質教案范文(通用8篇)08-23

《反比例意義》教學反思02-14

反比例意義教學反思02-13

小學數學六年級下冊反比例優秀教案08-26

淺析反比例函數教學中的誤區04-28

主站蜘蛛池模板: 房产| 彭山县| 张家口市| 陵川县| 崇礼县| 永登县| 揭东县| 玉龙| 河北区| 海淀区| 江阴市| 丁青县| 军事| 界首市| 玉门市| 葫芦岛市| 湘阴县| 罗定市| 台州市| 平阳县| 新泰市| 蓬溪县| 芒康县| 张家川| 扎赉特旗| 东明县| 廉江市| 封丘县| 齐河县| 家居| 丰台区| 香港 | 庆阳市| 无极县| 金溪县| 昌都县| 若尔盖县| 奎屯市| 阳春市| 庆安县| 湛江市|