重囗另类BBWSeⅹHD,av狼论坛,精品一卡2卡三卡4卡乱码理论,体育生gv老师浪小辉3p警察

Identification of strategy parameter

時間:2023-05-07 03:52:47 自然科學論文 我要投稿
  • 相關推薦

Identification of strategy parameters for particle swarm optimizer through Taguchi method

Abstract:Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has been used for finding promising solutions in complex search space through the interaction of particles in a swarm. It is a well recognized fact that the performance of evolutionary algorithms to a great extent depends on the choice of appropriate strategy/operating parameters like population size,crossover rate, mutation rate, crossover operator, etc. Generally, these parameters are selected through hit and trial process, which is very unsystematic and requires rigorous experimentation. This paper proposes a systematic based on Taguchi method reasoning scheme for rapidly identifying the strategy parameters for the PSO algorithm. The Taguchi method is a robust design approach using fractional factorial design to study a large number of parameters with small number of experiments. Computer simulations have been performed on two benchmark functions-Rosenbrock function and Griewank function-to validate the approach. 作者: Author: KHOSLA Arun[1]  KUMAR Shakti[2]  AGGARWAL K.K.[3] 作者單位: Department of Electronics and Communication Engineering, National Institute of Technology, Jalandhar 144011, IndiaCentre for Advanced Technology, Haryana Engineering College, Jagadhari 135003, IndiaVice Chancellor, GGS Indraprastha University, Delhi 110006, India 期 刊: 浙江大學學報A(英文版)   ISTICEISCI Journal: JOURNAL OF ZHEJIANG UNIVERSITY SCIENCE A 年,卷(期): 2006, 7(12) 分類號: N941 TP301.6 Keywords: Strategy parameters    Particle swarm optimization (PSO)    Taguchi method    ANOVA    機標分類號: TS9 TN3 機標關鍵詞: Taguchi method    evolutionary algorithms    fractional factorial design    robust design    search space 基金項目: Identification of strategy parameters for particle swarm optimizer through Taguchi method[期刊論文]  浙江大學學報A(英文版) --2006, 7(12)Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has b...

【Identification of strategy parameter】相關文章:

Aircraft Flutter Modal Parameter Identification Using a Numerically Robust Least-squares Estimator in Frequency Domain04-28

Study of (∧) decay parameter in J/ψ→∧(∧)decay04-29

Purification and Structure Identification of Hyaluronic Acid04-28

Co-operative learning—a good teaching strategy04-30

Application of homotopy parameter inversion method in Miyun Reservoir04-27

A Method for Identification of Selenoprotein Genes in Archaeal Genomes05-02

Recording-based identification of site liquefaction04-29

Pharmacophore Identification of Hydroxamate HDAC 1 Inhibitors04-29

Identification of an epitope of SARS-coronavirus nucleocapsid protein04-28

Identification of Rhodiola species by using RP-HPLC04-29

主站蜘蛛池模板: 蒙城县| 恩平市| 乐业县| 格尔木市| 互助| 阳朔县| 深泽县| 佛坪县| 永济市| 周口市| 从江县| 岐山县| 东乌珠穆沁旗| 玉门市| 台北县| 广饶县| 宁明县| 四会市| 蒙阴县| 青阳县| 北辰区| 凉山| 乡宁县| 高平市| 平定县| 昌黎县| 潮安县| 常山县| 农安县| 肃北| 岑溪市| 桐庐县| 讷河市| 平泉县| 龙陵县| 台南县| 仁化县| 昌江| 新化县| 壶关县| 中方县|