重囗另类BBWSeⅹHD,av狼论坛,精品一卡2卡三卡4卡乱码理论,体育生gv老师浪小辉3p警察

余弦定理證明

時間:2023-04-29 18:13:06 證明范文 我要投稿

余弦定理證明

余弦定理證明

在任意△ABC中, 作AD⊥BC.

余弦定理證明

∠C對邊為c,∠B對邊為b,∠A對邊為a -->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC=AD+DC

b=(sinB*c)+(a-cosB*c)

b=sinB*c+a+cosB*c-2ac*cosB

b=(sinB+cosB)*c-2ac*cosB+a

b=c+a-2ac*cosB

所以,cosB=(c+a-b)/2ac

2

如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c . 以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數的定義得B點坐標是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 現將CB平移到起點為原點A,則AD = CB . 而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根據三角函數的定義知D點坐標是 (acos(π-C),asin(π-C)) 即 D點坐標是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而 AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得 asinA = csinC ,同理可證 asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得 acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得 a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可證 b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:

mb=(1/2)[(√2(a^2+c^2)-b^2)]

mc=(1/2)[(√2(a^2+b^2)-c^2)]ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

4

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

證畢。

【余弦定理證明】相關文章:

垂心余弦定理證明04-28

余弦定理的證明方法04-28

余弦定理教案04-25

余弦定理教案01-11

“余弦定理”教學設計05-01

《余弦定理》教學反思范文(精選10篇)07-10

凸n邊形(n≥5)余弦定理04-28

單位證明范文_證明05-15

離職證明離職證明01-22

小孩改名證明范文_證明05-23

主站蜘蛛池模板: 东台市| 新龙县| 隆尧县| 庐江县| 临洮县| 湟中县| 康保县| 米林县| 洱源县| 通渭县| 定州市| 成都市| 宣威市| 城步| 西藏| 化隆| 独山县| 华坪县| 太保市| 旅游| 西藏| 钦州市| 承德市| 青河县| 固原市| 黎平县| 文昌市| 宜丰县| 太仆寺旗| 阳泉市| 大兴区| 察隅县| 南通市| 阜城县| 元朗区| 申扎县| 十堰市| 武平县| 武邑县| 郯城县| 晋中市|